
Approximate Computing
An Annotated Bibliography

This is an annotated bibliography on the topic of approximate computing. It’s
a living document meant to exhaustively catalog everything we know about
approximation along with the earlier work that influenced it. It’s also a collab-
orative, open-source project: to contribute, see its home on GitHub.
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1. Overview
Here’s the definition of approximate computing that this document uses:

Approximate computing is the idea that computer systems can let
applications trade off accuracy for efficiency. It includes any tech-
nique where the system intentionally exposes incorrectness to the
application layer in return for conserving some resource.

That definition is clearly broad enough to include many ideas that have ex-
isted since the beginning of (computational) time. Floating-point numbers,
for example, approximate real-number arithmetic to save space and time over
arbitrary-precision numerical representation. This document focuses on the
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study of approximate computing in general and system-level techniques that
apply this theory to create new trade-offs.

There are two main research directions in approximate computing, corre-
sponding to the two main sections in this annotated bibliography. This first
is on techniques for approximation: specific strategies for exploiting resilience
in applications for efficiency gains. The second is on programming approxi-
mate systems: assuming that approximation techniques exist, a host of new
programmability problems arise.

2. Approximation Techniques
This section enumerates techniques for implementing approximation. There are
three main categories: approximation in computer architecture (i.e., computa-
tion and storage hardware), approximation in software via program transforma-
tion, and approximation elsewhere (e.g., networks).

2.1. In Architecture
This section deals with hardware-oriented approximation techniques. We cate-
gorize the techniques according to the hardware component they affect.

2.1.1. Functional Units

One straightforward strategy for approximation in floating-point units is to
dynamically adapt mantissa width [133, 149].

A paper by Alvarez et al. proposes fuzzy memoization for FPUs [4]. The idea
is to store previously-computed results, as in ordinary memoization, but also
to provide a “match” even when inputs are merely close to other, previously-
seen inputs. (Fuzzy memoization comes up elsewhere in approximate computing
too.)

To facilitate voltage overscaling techniques for approximation, some work
designs functional units that are more resilient to timing errors than traditional,
precise designs [49]. Other work extends this graceful voltage–error scaling to
coarser computational blocks [91].
TODO. The above paragraph must be missing other work on voltage-overscaling-
tolerant units.
Alternative number representations work in tandem with relaxed functional
units to bound the numerical error that can result from bit flips [125].

A body of VLSI work has designed approximate adders, which are allowed
to yield incorrect results for some minority of input combinations [45, 46, 54,
57, 84, 118, 140, 143, 148, 154]. Liang et al. propose metrics for evaluating
these adders [72].
TODO. Should we break down the adder work into finer categories? Also,
there is now more work multipliers that deserves its own paragraph
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2.1.2. Memory

Several categories of work apply approximation to memory technologies. The
general idea is to spend less energy on retaining or accessing data; in return,
there is a small probability that bits will flip in the memory.

SRAM structures spend significant static power on retaining data, so they
represent another opportunity for fidelity trade-offs [21, 63, 120].

Similarly, DRAM structures can reduce the power spent on refresh cycles
where bit flips are allowed [74, 77].

In persistent memories where storage cells can wear out, approximate sys-
tems can reduce the number of bits they flip to lengthen the useful device
lifetime [41]. Similarly, low-power writes to memories like flash can exploit its
probabilistic properties while hiding them from software [73, 108, 134].
TODO. [112]
Spintronic memories exhibit similarly favorable trade-offs between access cost
and error [101].

2.1.3. Circuit Design

A broad category of work has proposed general techniques for making quality
trade-offs when synthesizing and optimizing general hardware circuits [9, 12,
83, 97, 100, 136, 137, 147]. Other tools focus on analyzing approximate circuit
designs [135, 139].

Near-threshold voltage domains also present a new opportunity for embrac-
ing unpredictable circuit operation [56].

Kahng et al. propose to place and route processor designs with paths that
do not exhibit a “cliff” where voltage scaling causes catastrophic failures [53].
The original idea there was for so-called better-than-worst-case (BTWC) designs
such as Razor [35], not approximate computing, but the connection to voltage-
overscaling architectures such as Truffle [37] is clear.
TODO. Need more citations on voltage overscaling here.

2.1.4. Relaxed Fault Tolerance

As a dual to adding errors in some circuits, some researchers have explored
differential fault protection in the face of universally unreliable circuits. As pro-
cess sizes continue to shrink, it is likely that reliable transistors will become the
minority; redundancy and checking will be necessary to provide reliable opera-
tion [68]. Circuit design techniques have been proposed that reduce the cost of
redundancy by providing it selectively for certain instructions in a CPU [128],
certain blocks in a DSP [5, 47, 55], or to components of a GPU [95]. Other
work has used criticality information to selectively allocate software-level error
detection and correction resources [32, 59, 119].
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2.1.5. Microarchitecture

Microarchitectural mechanisms can exploit different opportunities from circuit-
level techniques. Specifically, “soft coherence” relaxes intercore communica-
tion [76], and load value approximation [85, 132] approximates numerical val-
ues instead of fetching them from main memory on cache misses.

Recent work has proposed system organizations that apply approximation at
a coarser grain. One set of techniques uses external monitoring to allow errors
even in processor control logic [151, 152]. Other approaches compose separate
processing units with different levels of reliability [65]. Duwe [33] proposes run-
time coalescing of approximate and precise computations to reduce the overhead
of switching between modes. Other work allocates approximation among the
lanes of a SIMD unit [1]. In all cases, the gains from approximation can be
larger than for lower-level techniques that affect individual operations. As the
granularity principle from outlines, techniques like these that approximate entire
computations, including control flow, have the greatest efficiency potential.

2.1.6. Stochastic Computing

Stochastic computing is an alternative computational model where values are
represented using probabilities [8, 20, 27, 79, 93, 94, 141]. For example, a wire
could carry a random sequence of bits, where the wire’s value corresponds to
the probability that a given bit is a 1. Multiplication can be implemented in
this model using a single and gate, so simple circuits can be low-power and
area-efficient. A persistent challenge in stochastic circuits, however, is that
reading and output value requires a number of bits that is exponential in the
value’s magnitude. Relaxing this constraint represents an opportunity for an
time–accuracy trade-off.

2.2. In Software
Aside from hardware-level accuracy trade-offs, there are opportunities for adapt-
ing algorithms to execute with varying precision. Algorithmic quality–complexity
trade-offs are not new, but recent work has proposed tools for automatically
transforming programs to take advantage of them. Transformations include
removing portions of a program’s dynamic execution (termed code perfora-
tion) [121], unsound parallelization of serial programs [86], eliminating syn-
chronization in parallel programs [82, 89, 102, 103], identifying and adjust-
ing parameters that control output quality Hoffmann et al. [51], randomiz-
ing deterministic programs [88, 155], dynamically choosing between different
programmer-provided implementations of the same specification [6, 7, 10, 39,
138, 142], and replacing subcomputations with invocations of a trained neural
network [36].

Some work on algorithmic approximation targets specific hardware: notably,
general-purpose GPUs [44, 109, 110, 114]. In a GPU setting, approximation
strategies benefit most by optimizing for memory bandwidth and control diver-
gence.
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Recently, a research direction has developed in automated program repair and
other approaches to heuristically patching software according to programmer-
specified criteria. These techniques are typically approximate in that they aban-
don a traditional compiler’s goal of perfectly preserving the original program’s
semantics. Notably, Schulte et al. [116] propose to use program evolution to
optimize for energy.

Precimonious [107] addresses the problem of choosing appropriate floating-
point widths, which amount to a trade-off between numerical accuracy and space
or operation cost. Similarly, STOKE’s floating-point extension [115] synthesizes
new versions of floating-point functions from scratch to meet different accuracy
requirements with optimal efficiency.

Neural acceleration is a recent technique that treats code as a black box
and transforms it into a neural network [25, 36, 80, 129]. It is, at its core, an
algorithmic transformation, but it integrates tightly with hardware support: a
digital accelerator Esmaeilzadeh et al. [36], analog circuits [124], FPGAs [92],
GPUs [44], or, recently, new analog substrates using resistive memory [67] or
memristors [75].

2.3. In Other Systems
While architecture optimizations and program transformations dominate the
field of proposed exploitations of approximate software, some recent work has
explored the same trade-off in other components of computer systems.

Network communication, with its reliance on imperfect underlying channels,
exhibits opportunities for fidelity trade-offs [52, 78, 117, 126]. Notably, Soft-
Cast [52] transmits images and video by making the signal magnitude directly
proportional to pixel luminance. BlinkDB, a recent instance of research on ap-
proximate query answering, is a database system that can respond to queries
that include a required accuracy band on their output [2]. Uncertain\<T> [13]
and Lax [127] propose to expose the probabilistic behavior of sensors to pro-
grams. In a distributed system or a supercomputer, approximation techniques
can eschew redundancy and recovery for efficiency [50].

3. Programming with Approximation
This work tends to assume an existing, domain-specific notion of “quality” for
each application. As the principle in suggests, these quality metrics need careful
consideration: one quality metric is not necessarily just as good as another.
Recent work has proposed guidelines for rigorous quality measurement [3].

3.1. Approximate Languages
Recently, language constructs that express and constrain approximation have
become a focus in the programming-languages research community. Relax de Kruijf
et al. [32] is a language with ISA support for tolerating architectural faults in
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software. Rely Carbin et al. [18] uses specifications that relate the reliability of
the input to an approximate region of code to its outputs.

A related set of recent approximate-programming tools attempt to adapt a
program to meet accuracy demands while using as few resources as possible.
Chisel Misailovic et al. [90] is an extension to Rely that searches for the subset
of operations in a program that can safely be made approximate. ExpAX [38]
finds safe-to-approximate operations automatically and uses a metaheuristic to
find which subset of them to actually approximate.

Some other programming systems that focus on energy efficiency include
approximation ideas: Eon [123] is a language for long-running embedded sys-
tems that can drop tasks when energy resources are low, and the Energy Types
language [29] incorporates a variety of strategies for expressing energy require-
ments.

3.2. Programmer Tools
Aside from programming languages, separate programmer tools can help analyze
and control the effects of approximation.

A quality-of-service profiler helps programmers identify parts of programs
that may be good targets for approximation techniques [87]. Conversely, debug-
ging tools can identify components where approximation is too aggressive [104].
Some verification tools and proof systems help the programmer prove relation-
ships between the original program and a candidate relaxed version [15–17,
144].

As an alternative to statically bounding errors, dynamic techniques can mon-
itor quality degradation at run time. The critical challenge for these techniques
is balancing detection accuracy with the added cost, which takes away from
the efficiency advantages of approximation. Some work has suggested that pro-
grammers can provide domain-specific checks on output quality [43, 104]. Re-
cent work has explored automatic generation of error detectors [58]. A variety
of techniques propose mechanisms for run-time or profiling feedback to adapt
approximation parameters [7, 10, 51, 153].

3.3. Probabilistic Languages
One specific research direction, probabilistic programming languages, focuses on
expressing statistical models, especially for machine learning [11, 19, 42, 60, 61,
96, 113, 145]. The goal is to enable efficient statistical inference over arbitrary
models written in the probabilistic programming language.

Earlier work examines the semantics of probabilistic behavior in more tra-
ditional programming models [62]. Similarly, the probability monad captures
a variable’s discrete probability distribution in functional programs [99]. Sta-
tistical model checking tools can analyze programs to prove statistical proper-
ties [64, 66]. Recently, Bornholt et al. [13] proposed a construct for explicitly
representing probability distributions in a mainstream programming language.
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3.4. Robustness Analysis
As the studies in Section [sec:related:studies] repeatedly find, error tolerance
varies greatly in existing software, both within and between programs. Inde-
pendent of approximate computing, programming-languages researchers have
sought to identify and enhance error resilience properties.

SJava analyzes programs to prove that errors only temporarily disrupt the
execution path of a program [34]. Program smoothing [22–24] and robustifi-
cation [122] both find continuous, mathematical functions that resemble the
input–output behavior of numerical programs. Auto-tuning approaches can
help empirically identify error-resilient components [105]. Finally, Cong and
Gururaj describe a technique for automatically distinguishing between critical
and non-critical instructions for the purpose of selective fault tolerance [30].

3.5. Application Tolerance Studies
This category of proto-approximate-computing work focuses on analyzing ap-
plications to measure their resilience to error. These papers typically assume
a particular model of error—often hardware-inspired, such as random bit flips
in memory—and execute programs under simulation, measuring crashes and
output-quality degradation. To measure output quality, these studies typically
define a straightforward metric for each application, such as PSNR for media
outputs.
TODO. Summarize the papers in the next paragraph.
Three papers by Li and Yeung in 2006–08 [69–71]; other papers that need sum-
maries [26, 48, 81, 106, 130]. A 2009 study in SELSE, de Kruijf and Sankar-
alingam [31], precedes the authors’ later work on software-directed fault recov-
ery [32].

One category of studies focuses on specific application domains. Wong
and Horowitz identify resilience specifically in probabilistic-inference applica-
tions [146]. Fang et al. [40] address video applications, and Yeh et al. [150]
address physical simulation for animation. Other studies have focused on inte-
grated circuit designs rather than software applications [14, 28].

LLFI is a tool based on LLVM for performing this kind of simulation by
injecting errors at the compiler-IR level [131].
Some of these studies conclude that there is a useful distinction between critical
and non-critical program points, typically instructions [48, 130, 131]. This con-
clusion is borne out in later work on systems that exploit this distinction [74,
111].

3.6. Security
Recent work in security has exploited patterns in these variability-based errors
in DRAM to deanonymize users [98].
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