
Approximate Computing
An Annotated Bibliography

This is an annotated bibliography on the topic of approximate computing. It’s
a living document meant to exhaustively catalog everything we know about
approximation along with the earlier work that influenced it. It’s also a collab-
orative, open-source project: to contribute, see its home on GitHub.

Contents
1. Overview 1
2. Approximation Techniques 2

2.1. In Architecture . 2
2.2. In Software . 4
2.3. In Other Systems . 5

3. Programming with Approximation 5
3.1. Approximate Languages . 5
3.2. Programmer Tools . 6
3.3. Probabilistic Languages . 6
3.4. Robustness Analysis . 7
3.5. Application Tolerance Studies . 7
3.6. Security . 7

1. Overview
Here’s the definition of approximate computing that this document uses:

Approximate computing is the idea that computer systems can let
applications trade off accuracy for efficiency. It includes any tech-
nique where the system intentionally exposes incorrectness to the
application layer in return for conserving some resource.

That definition is clearly broad enough to include many ideas that have ex-
isted since the beginning of (computational) time. Floating-point numbers,
for example, approximate real-number arithmetic to save space and time over
arbitrary-precision numerical representation. This document focuses on the

1

https://github.com/sampsyo/approxbib

study of approximate computing in general and system-level techniques that
apply this theory to create new trade-offs.

There are two main research directions in approximate computing, corre-
sponding to the two main sections in this annotated bibliography. This first
is on techniques for approximation: specific strategies for exploiting resilience
in applications for efficiency gains. The second is on programming approxi-
mate systems: assuming that approximation techniques exist, a host of new
programmability problems arise.

2. Approximation Techniques
This section enumerates techniques for implementing approximation. There are
three main categories: approximation in computer architecture (i.e., computa-
tion and storage hardware), approximation in software via program transforma-
tion, and approximation elsewhere (e.g., networks).

2.1. In Architecture
This section deals with hardware-oriented approximation techniques. We cate-
gorize the techniques according to the hardware component they affect.

2.1.1. Functional Units

One straightforward strategy for approximation in floating-point units is to
dynamically adapt mantissa width [133, 149].

A paper by Alvarez et al. proposes fuzzy memoization for FPUs [4]. The idea
is to store previously-computed results, as in ordinary memoization, but also
to provide a “match” even when inputs are merely close to other, previously-
seen inputs. (Fuzzy memoization comes up elsewhere in approximate computing
too.)

To facilitate voltage overscaling techniques for approximation, some work
designs functional units that are more resilient to timing errors than traditional,
precise designs [49]. Other work extends this graceful voltage–error scaling to
coarser computational blocks [91].
TODO. The above paragraph must be missing other work on voltage-overscaling-
tolerant units.
Alternative number representations work in tandem with relaxed functional
units to bound the numerical error that can result from bit flips [125].

A body of VLSI work has designed approximate adders, which are allowed
to yield incorrect results for some minority of input combinations [45, 46, 54,
57, 84, 118, 140, 143, 148, 154]. Liang et al. propose metrics for evaluating
these adders [72].
TODO. Should we break down the adder work into finer categories? Also,
there is now more work multipliers that deserves its own paragraph

2

2.1.2. Memory

Several categories of work apply approximation to memory technologies. The
general idea is to spend less energy on retaining or accessing data; in return,
there is a small probability that bits will flip in the memory.

SRAM structures spend significant static power on retaining data, so they
represent another opportunity for fidelity trade-offs [21, 63, 120].

Similarly, DRAM structures can reduce the power spent on refresh cycles
where bit flips are allowed [74, 77].

In persistent memories where storage cells can wear out, approximate sys-
tems can reduce the number of bits they flip to lengthen the useful device
lifetime [41]. Similarly, low-power writes to memories like flash can exploit its
probabilistic properties while hiding them from software [73, 108, 134].
TODO. [112]
Spintronic memories exhibit similarly favorable trade-offs between access cost
and error [101].

2.1.3. Circuit Design

A broad category of work has proposed general techniques for making quality
trade-offs when synthesizing and optimizing general hardware circuits [9, 12,
83, 97, 100, 136, 137, 147]. Other tools focus on analyzing approximate circuit
designs [135, 139].

Near-threshold voltage domains also present a new opportunity for embrac-
ing unpredictable circuit operation [56].

Kahng et al. propose to place and route processor designs with paths that
do not exhibit a “cliff” where voltage scaling causes catastrophic failures [53].
The original idea there was for so-called better-than-worst-case (BTWC) designs
such as Razor [35], not approximate computing, but the connection to voltage-
overscaling architectures such as Truffle [37] is clear.
TODO. Need more citations on voltage overscaling here.

2.1.4. Relaxed Fault Tolerance

As a dual to adding errors in some circuits, some researchers have explored
differential fault protection in the face of universally unreliable circuits. As pro-
cess sizes continue to shrink, it is likely that reliable transistors will become the
minority; redundancy and checking will be necessary to provide reliable opera-
tion [68]. Circuit design techniques have been proposed that reduce the cost of
redundancy by providing it selectively for certain instructions in a CPU [128],
certain blocks in a DSP [5, 47, 55], or to components of a GPU [95]. Other
work has used criticality information to selectively allocate software-level error
detection and correction resources [32, 59, 119].

3

2.1.5. Microarchitecture

Microarchitectural mechanisms can exploit different opportunities from circuit-
level techniques. Specifically, “soft coherence” relaxes intercore communica-
tion [76], and load value approximation [85, 132] approximates numerical val-
ues instead of fetching them from main memory on cache misses.

Recent work has proposed system organizations that apply approximation at
a coarser grain. One set of techniques uses external monitoring to allow errors
even in processor control logic [151, 152]. Other approaches compose separate
processing units with different levels of reliability [65]. Duwe [33] proposes run-
time coalescing of approximate and precise computations to reduce the overhead
of switching between modes. Other work allocates approximation among the
lanes of a SIMD unit [1]. In all cases, the gains from approximation can be
larger than for lower-level techniques that affect individual operations. As the
granularity principle from outlines, techniques like these that approximate entire
computations, including control flow, have the greatest efficiency potential.

2.1.6. Stochastic Computing

Stochastic computing is an alternative computational model where values are
represented using probabilities [8, 20, 27, 79, 93, 94, 141]. For example, a wire
could carry a random sequence of bits, where the wire’s value corresponds to
the probability that a given bit is a 1. Multiplication can be implemented in
this model using a single and gate, so simple circuits can be low-power and
area-efficient. A persistent challenge in stochastic circuits, however, is that
reading and output value requires a number of bits that is exponential in the
value’s magnitude. Relaxing this constraint represents an opportunity for an
time–accuracy trade-off.

2.2. In Software
Aside from hardware-level accuracy trade-offs, there are opportunities for adapt-
ing algorithms to execute with varying precision. Algorithmic quality–complexity
trade-offs are not new, but recent work has proposed tools for automatically
transforming programs to take advantage of them. Transformations include
removing portions of a program’s dynamic execution (termed code perfora-
tion) [121], unsound parallelization of serial programs [86], eliminating syn-
chronization in parallel programs [82, 89, 102, 103], identifying and adjust-
ing parameters that control output quality Hoffmann et al. [51], randomiz-
ing deterministic programs [88, 155], dynamically choosing between different
programmer-provided implementations of the same specification [6, 7, 10, 39,
138, 142], and replacing subcomputations with invocations of a trained neural
network [36].

Some work on algorithmic approximation targets specific hardware: notably,
general-purpose GPUs [44, 109, 110, 114]. In a GPU setting, approximation
strategies benefit most by optimizing for memory bandwidth and control diver-
gence.

4

Recently, a research direction has developed in automated program repair and
other approaches to heuristically patching software according to programmer-
specified criteria. These techniques are typically approximate in that they aban-
don a traditional compiler’s goal of perfectly preserving the original program’s
semantics. Notably, Schulte et al. [116] propose to use program evolution to
optimize for energy.

Precimonious [107] addresses the problem of choosing appropriate floating-
point widths, which amount to a trade-off between numerical accuracy and space
or operation cost. Similarly, STOKE’s floating-point extension [115] synthesizes
new versions of floating-point functions from scratch to meet different accuracy
requirements with optimal efficiency.

Neural acceleration is a recent technique that treats code as a black box
and transforms it into a neural network [25, 36, 80, 129]. It is, at its core, an
algorithmic transformation, but it integrates tightly with hardware support: a
digital accelerator Esmaeilzadeh et al. [36], analog circuits [124], FPGAs [92],
GPUs [44], or, recently, new analog substrates using resistive memory [67] or
memristors [75].

2.3. In Other Systems
While architecture optimizations and program transformations dominate the
field of proposed exploitations of approximate software, some recent work has
explored the same trade-off in other components of computer systems.

Network communication, with its reliance on imperfect underlying channels,
exhibits opportunities for fidelity trade-offs [52, 78, 117, 126]. Notably, Soft-
Cast [52] transmits images and video by making the signal magnitude directly
proportional to pixel luminance. BlinkDB, a recent instance of research on ap-
proximate query answering, is a database system that can respond to queries
that include a required accuracy band on their output [2]. Uncertain\<T> [13]
and Lax [127] propose to expose the probabilistic behavior of sensors to pro-
grams. In a distributed system or a supercomputer, approximation techniques
can eschew redundancy and recovery for efficiency [50].

3. Programming with Approximation
This work tends to assume an existing, domain-specific notion of “quality” for
each application. As the principle in suggests, these quality metrics need careful
consideration: one quality metric is not necessarily just as good as another.
Recent work has proposed guidelines for rigorous quality measurement [3].

3.1. Approximate Languages
Recently, language constructs that express and constrain approximation have
become a focus in the programming-languages research community. Relax de Kruijf
et al. [32] is a language with ISA support for tolerating architectural faults in

5

software. Rely Carbin et al. [18] uses specifications that relate the reliability of
the input to an approximate region of code to its outputs.

A related set of recent approximate-programming tools attempt to adapt a
program to meet accuracy demands while using as few resources as possible.
Chisel Misailovic et al. [90] is an extension to Rely that searches for the subset
of operations in a program that can safely be made approximate. ExpAX [38]
finds safe-to-approximate operations automatically and uses a metaheuristic to
find which subset of them to actually approximate.

Some other programming systems that focus on energy efficiency include
approximation ideas: Eon [123] is a language for long-running embedded sys-
tems that can drop tasks when energy resources are low, and the Energy Types
language [29] incorporates a variety of strategies for expressing energy require-
ments.

3.2. Programmer Tools
Aside from programming languages, separate programmer tools can help analyze
and control the effects of approximation.

A quality-of-service profiler helps programmers identify parts of programs
that may be good targets for approximation techniques [87]. Conversely, debug-
ging tools can identify components where approximation is too aggressive [104].
Some verification tools and proof systems help the programmer prove relation-
ships between the original program and a candidate relaxed version [15–17,
144].

As an alternative to statically bounding errors, dynamic techniques can mon-
itor quality degradation at run time. The critical challenge for these techniques
is balancing detection accuracy with the added cost, which takes away from
the efficiency advantages of approximation. Some work has suggested that pro-
grammers can provide domain-specific checks on output quality [43, 104]. Re-
cent work has explored automatic generation of error detectors [58]. A variety
of techniques propose mechanisms for run-time or profiling feedback to adapt
approximation parameters [7, 10, 51, 153].

3.3. Probabilistic Languages
One specific research direction, probabilistic programming languages, focuses on
expressing statistical models, especially for machine learning [11, 19, 42, 60, 61,
96, 113, 145]. The goal is to enable efficient statistical inference over arbitrary
models written in the probabilistic programming language.

Earlier work examines the semantics of probabilistic behavior in more tra-
ditional programming models [62]. Similarly, the probability monad captures
a variable’s discrete probability distribution in functional programs [99]. Sta-
tistical model checking tools can analyze programs to prove statistical proper-
ties [64, 66]. Recently, Bornholt et al. [13] proposed a construct for explicitly
representing probability distributions in a mainstream programming language.

6

3.4. Robustness Analysis
As the studies in Section [sec:related:studies] repeatedly find, error tolerance
varies greatly in existing software, both within and between programs. Inde-
pendent of approximate computing, programming-languages researchers have
sought to identify and enhance error resilience properties.

SJava analyzes programs to prove that errors only temporarily disrupt the
execution path of a program [34]. Program smoothing [22–24] and robustifi-
cation [122] both find continuous, mathematical functions that resemble the
input–output behavior of numerical programs. Auto-tuning approaches can
help empirically identify error-resilient components [105]. Finally, Cong and
Gururaj describe a technique for automatically distinguishing between critical
and non-critical instructions for the purpose of selective fault tolerance [30].

3.5. Application Tolerance Studies
This category of proto-approximate-computing work focuses on analyzing ap-
plications to measure their resilience to error. These papers typically assume
a particular model of error—often hardware-inspired, such as random bit flips
in memory—and execute programs under simulation, measuring crashes and
output-quality degradation. To measure output quality, these studies typically
define a straightforward metric for each application, such as PSNR for media
outputs.
TODO. Summarize the papers in the next paragraph.
Three papers by Li and Yeung in 2006–08 [69–71]; other papers that need sum-
maries [26, 48, 81, 106, 130]. A 2009 study in SELSE, de Kruijf and Sankar-
alingam [31], precedes the authors’ later work on software-directed fault recov-
ery [32].

One category of studies focuses on specific application domains. Wong
and Horowitz identify resilience specifically in probabilistic-inference applica-
tions [146]. Fang et al. [40] address video applications, and Yeh et al. [150]
address physical simulation for animation. Other studies have focused on inte-
grated circuit designs rather than software applications [14, 28].

LLFI is a tool based on LLVM for performing this kind of simulation by
injecting errors at the compiler-IR level [131].
Some of these studies conclude that there is a useful distinction between critical
and non-critical program points, typically instructions [48, 130, 131]. This con-
clusion is borne out in later work on systems that exploit this distinction [74,
111].

3.6. Security
Recent work in security has exploited patterns in these variability-based errors
in DRAM to deanonymize users [98].

7

http://llvm.org/

References
[1] S. Abdallah, A. Chehab, A. Kayssi, and I.H. Elhajj. TABSH: Tag-based

stochastic hardware. In International Conference on Energy Aware Com-
puting Systems & Applications (ICEAC), 2013.

[2] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel
Madden, and Ion Stoica. BlinkDB: Queries with bounded errors and
bounded response times on very large data. In ACM European Conference
on Computer Systems (EuroSys), 2013.

[3] Ismail Akturk, Karen Khatamifard, and Ulya R. Karpuzcu. On quan-
tification of accuracy loss in approximate computing. In Workshop on
Duplicating, Deconstructing and Debunking (WDDD), 2015.

[4] Carlos Alvarez, Jesus Corbal, and Mateo Valero. Fuzzy memoization for
floating-point multimedia applications. IEEE Transactions on Computers,
54 (7), 2005.

[5] Rajeevan Amirtharajah and Anantha P Chandrakasan. A micropower pro-
grammable DSP using approximate signal processing based on distributed
arithmetic. IEEE Journal of Solid-State Circuits, 39 (2): 337–347, 2004.

[6] Jason Ansel, Cy P. Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao,
Alan Edelman, and Saman P. Amarasinghe. PetaBricks: a language and
compiler for algorithmic choice. In ACM Conference on Programming
Language Design and Implementation (PLDI), 2009.

[7] Jason Ansel, Yee Lok Wong, Cy P. Chan, Marek Olszewski, Alan Edel-
man, and Saman P. Amarasinghe. Language and compiler support for
auto-tuning variable-accuracy algorithms. In International Symposium
on Code Generation and Optimization (CGO), 2011.

[8] Gary Anthes. Inexact design: beyond fault-tolerance. Communications of
the ACM , 56 (4): 18–20, April 2013.

[9] Lingamneni Avinash, Christian C. Enz, Jean-Luc Nagel, Krishna V.
Palem, and Christian Piguet. Energy parsimonious circuit design through
probabilistic pruning. In Design, Automation and Test in Europe (DATE),
2011.

[10] Woongki Baek and Trishul M. Chilimbi. Green: A framework for sup-
porting energy-conscious programming using controlled approximation.
In ACM Conference on Programming Language Design and Implementa-
tion (PLDI), 2010.

[11] Sooraj Bhat, Johannes Borgström, Andrew D. Gordon, and Claudio
Russo. Deriving probability density functions from probabilistic func-
tional programs. In International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), 2013.

8

[12] David Boland and George A. Constantinides. A scalable approach for
automated precision analysis. In ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays (FPGA), 2012.

[13] James Bornholt, Todd Mytkowicz, and Kathryn S. McKinley. Uncer-
tain<T>: A first-order type for uncertain data. In International Confer-
ence on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2014.

[14] Melvin A. Breuer. Multi-media applications and imprecise computation.
In Euromicro Conference on Digital System Design (DSD), 2005.

[15] Michael Carbin and Martin Rinard. (Relative) safety properties for re-
laxed approximate programs. In Workshop on Relaxing Synchronization
for Multicore and Manycore Scalability (RACES), 2012.

[16] Michael Carbin, Deokhwan Kim, Sasa Misailovic, and Martin C. Rinard.
Proving acceptability properties of relaxed nondeterministic approximate
programs. In ACM Conference on Programming Language Design and
Implementation (PLDI), 2012.

[17] Michael Carbin, Deokhwan Kim, Sasa Misailovic, and Martin C. Rinard.
Verified integrity properties for safe approximate program transforma-
tions. In ACM SIGPLAN Workshop on Partial Evaluation and Program
Manipulation (PEPM), 2013a.

[18] Michael Carbin, Sasa Misailovic, and Martin C. Rinard. Verifying quan-
titative reliability for programs that execute on unreliable hardware. In
ACM Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), 2013b.

[19] Arun T. Chaganty, Aditya V. Nori, and Sriram K. Rajamani. Efficiently
sampling probabilistic programs via program analysis. In International
Conference on Artificial Intelligence and Statistics (AISTATS), 2013.

[20] Lakshmi N. Chakrapani, Bilge E. S. Akgul, Suresh Cheemalavagu, Pinar
Korkmaz, Krishna V. Palem, and Balasubramanian Seshasayee. Ultra-
efficient (embedded) SOC architectures based on probabilistic CMOS
(PCMOS) technology. In Design, Automation and Test in Europe
(DATE), 2006.

[21] Ik Joon Chang, D. Mohapatra, and K. Roy. A priority-based 6T/8T
hybrid SRAM architecture for aggressive voltage scaling in video applica-
tions. IEEE Transactions on Circuits and Systems for Video Technology,
21 (2): 101–112, 2011.

[22] Swarat Chaudhuri and Armando Solar-Lezama. Smooth interpretation. In
ACM Conference on Programming Language Design and Implementation
(PLDI), 2010.

9

[23] Swarat Chaudhuri and Armando Solar-Lezama. Smoothing a program
soundly and robustly. In International Conference on Computer Aided
Verification (CAV), 2011.

[24] Swarat Chaudhuri, Sumit Gulwani, Roberto Lublinerman, and Sara
Navidpour. Proving programs robust. In ACM SIGSOFT Symposium
on the Foundations of Software Engineering (FSE), 2011.

[25] Tianshi Chen, Yunji Chen, Marc Duranton, Qi Guo, Atif Hashmi,
Mikko H. Lipasti, Andrew Nere, Shi Qiu, Michèle Sebag, and Olivier
Temam. BenchNN: On the broad potential application scope of hard-
ware neural network accelerators. In IEEE International Symposium on
Workload Characterization (IISWC), 2012.

[26] Vinay K. Chippa, Srimat T. Chakradhar, Kaushik Roy, and Anand
Raghunathan. Analysis and characterization of inherent application re-
silience for approximate computing. In Design Automation Conference
(DAC), 2013.

[27] Vinay K. Chippa, Swagath Venkataramani, Kaushik Roy, and Anand
Raghunathan. StoRM: A stochastic recognition and mining proces-
sor. In International Symposium on Low Power Electronics and Design
(ISLPED), 2014.

[28] V.K. Chippa, D. Mohapatra, A. Raghunathan, K. Roy, and S.T. Chakrad-
har. Scalable effort hardware design: Exploiting algorithmic resilience for
energy efficiency. In Design Automation Conference (DAC), 2010.

[29] Michael Cohen, Haitao Steve Zhu, Emgin Ezgi Senem, and Yu David
Liu. Energy types. In ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), 2012.

[30] Jason Cong and Karthik Gururaj. Assuring application-level correctness
against soft errors. In IEEE–ACM International Conference on Computer-
Aided Design (ICCAD), 2011.

[31] M. de Kruijf and K. Sankaralingam. Exploring the synergy of emerging
workloads and silicon reliability trends. In Workshop on Silicon Errors in
Logic: System Effects (SELSE), 2009.

[32] Marc de Kruijf, Shuou Nomura, and Karthikeyan Sankaralingam. Relax:
an architectural framework for software recovery of hardware faults. In
International Symposium on Computer Architecture (ISCA), 2010.

[33] Henry Duwe. Exploiting application level error resilience via deferred
execution. Master’s thesis, University of Illinois at Urbana-Champaign,
2013.

10

[34] Yong hun Eom and Brian Demsky. Self-stabilizing Java. In ACM Con-
ference on Programming Language Design and Implementation (PLDI),
2012.

[35] D. Ernst, Nam Sung Kim, S. Das, S. Pant, R. Rao, Toan Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge. Razor: A low-power
pipeline based on circuit-level timing speculation. In IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO), 2003.

[36] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Neural
acceleration for general-purpose approximate programs. In IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2012a.

[37] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Ar-
chitecture support for disciplined approximate programming. In Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2012b.

[38] Hadi Esmaeilzadeh, Kangqi Ni, and Mayur Naik. Expectation-oriented
framework for automating approximate programming. Technical Re-
port GT-CS-13-07, Georgia Institute of Technology, 2013. URL
http://hdl.handle.net/1853/49755.

[39] Shuangde Fang, Zidong Du, Yuntan Fang, Yuanjie Huang, Yang Chen,
Lieven Eeckhout, Olivier Temam, Huawei Li, Yunji Chen, and Chengyong
Wu. Performance portability across heterogeneous SoCs using a general-
ized library-based approach. ACM Transactions on Architecture and Code
Optimization (TACO), 11 (2): 21:1–21:25, June 2014.

[40] Yuntan Fang, Huawei Li, and Xiaowei Li. A fault criticality evaluation
framework of digital systems for error tolerant video applications. In Asian
Test Symposium (ATS), 2011.

[41] Yuntan Fang, Huawei Li, and Xiaowei Li. SoftPCM: Enhancing energy
efficiency and lifetime of phase change memory in video applications via
approximate write. In Asian Test Symposium (ATS), 2012.

[42] Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Keith
Bonawitz, and Joshua B. Tenenbaum. Church: a language for generative
models. In Conference on Uncertainty in Artificial Intelligence (UAI),
2008.

[43] Beayna Grigorian and Glenn Reinman. Dynamically adaptive and reliable
approximate computing using light-weight error analysis. In NASA–ESA
Conference On Adaptive Hardware And Systems (AHS), 2014a.

[44] Beayna Grigorian and Glenn Reinman. Accelerating divergent applica-
tions on SIMD architectures using neural networks. In IEEE International
Conference on Computer Design, 2014b.

11

http://hdl.handle.net/1853/49755

[45] V. Gupta, D. Mohapatra, Sang Phill Park, A. Raghunathan, and K. Roy.
IMPACT: Imprecise adders for low-power approximate computing. In In-
ternational Symposium on Low Power Electronics and Design (ISLPED),
2011.

[46] Vaibhav Gupta, Debabrata Mohapatra, Anand Raghunathan, and
Kaushik Roy. Low-power digital signal processing using approximate
adders. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems (TCAD), 32 (1): 124–137, Jan 2013.

[47] Rajamohana Hegde and Naresh R. Shanbhag. Energy-efficient signal pro-
cessing via algorithmic noise-tolerance. In International Symposium on
Low Power Electronics and Design (ISLPED), 1999.

[48] Andreas Heinig, Vincent John Mooney, Florian Schmoll, Peter Marwedel,
Krishna V. Palem, and Michael Engel. Classification-based improvement
of application robustness and quality of service in probabilistic computer
systems. In International Conference on Architecture of Computing Sys-
tems (ARCS), 2012.

[49] Caglar Hizli. Energy aware probabilistic arithmetics. Master’s thesis,
Eindhoven University of Technology, 2013.

[50] Chen-Han Ho, M. de Kruijf, K. Sankaralingam, B. Rountree, M. Schulz,
and B.R. De Supinski. Mechanisms and evaluation of cross-layer fault-
tolerance for supercomputing. In IEEE International Conference on Par-
allel Processing (ICPP), 2012.

[51] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic,
Anant Agarwal, and Martin C. Rinard. Dynamic knobs for responsive
power-aware computing. In International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2011.

[52] Szymon Jakubczak and Dina Katabi. SoftCast: clean-slate scalable wire-
less video. In Workshop on Wireless of the Students, by the Students, for
the Students (S3), 2010.

[53] A.B. Kahng, Seokhyeong Kang, R. Kumar, and J. Sartori. Designing a
processor from the ground up to allow voltage/reliability tradeoffs. In
International Symposium on High-Performance Computer Architecture
(HPCA), 2010.

[54] Andrew B. Kahng and Seokhyeong Kang. Accuracy-configurable adder
for approximate arithmetic designs. In Design Automation Conference
(DAC), 2012.

[55] Georgios Karakonstantis, Debabrata Mohapatra, and Kaushik Roy. Logic
and memory design based on unequal error protection for voltage-scalable,

12

robust and adaptive DSP systems. Journal of Signal Processing Systems,
68 (3): 415–431, September 2012.

[56] Ulya R. Karpuzcu, Ismail Akturk, and Nam Sung Kim. Accordion: To-
ward soft near-threshold voltage computing. In International Symposium
on High-Performance Computer Architecture (HPCA), 2014.

[57] Zvi M. Kedem, Vincent J. Mooney, Kirthi Krishna Muntimadugu, and
Krishna V. Palem. An approach to energy-error tradeoffs in approximate
ripple carry adders. In International Symposium on Low Power Electronics
and Design (ISLPED), 2011.

[58] Daya S. Khudia, Babak Zamirai, Mehrzad Samadi, and Scott Mahlke.
Rumba: An online quality management system for approximate comput-
ing. In International Symposium on Computer Architecture (ISCA), 2015.

[59] Daya Shanker Khudia and Scott Mahlke. Harnessing soft computations
for low-budget fault tolerance. In IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2014.

[60] Oleg Kiselyov and Chung-Chieh Shan. Embedded probabilistic program-
ming. In IFIP Working Conference on Domain-Specific Languages (DSL),
2009.

[61] Daphne Koller, David McAllester, and Avi Pfeffer. Effective Bayesian
inference for stochastic programs. In AAAI Conference on Artificial In-
telligence (AAAI), 1997.

[62] D. Kozen. Semantics of probabilistic programs. In IEEE Symposium on
Foundations of Computer Science (FOCS), pages 101–114, Oct 1979.

[63] Animesh Kumar, Jan Rabaey, and Kannan Ramchandran. SRAM supply
voltage scaling: A reliability perspective. In International Symposium on
Quality Electronic Design (ISQED), 2009.

[64] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of
probabilistic real-time systems. In International Conference on Computer
Aided Verification (CAV), 2011.

[65] Larkhoon Leem, Hyungmin Cho, Jason Bau, Quinn A. Jacobson, and
Subhasish Mitra. ERSA: Error resilient system architecture for proba-
bilistic applications. In Design, Automation and Test in Europe (DATE),
2010.

[66] A. Legay and B. Delahaye. Statistical model checking: A brief overview.
Quantitative Models: Expressiveness and Analysis, 2010.

[67] Boxun Li, Peng Gu, Yi Shan, Yu Wang, Yiran Chen, and Huazhong
Yang. RRAM-based analog approximate computing. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
2015.

13

[68] Man-Lap Li, Pradeep Ramachandran, Swarup Kumar Sahoo, Sarita V.
Adve, Vikram S. Adve, and Yuanyuan Zhou. Understanding the prop-
agation of hard errors to software and implications for resilient system
design. In International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), 2008.

[69] Xuanhua Li and Donald Yeung. Exploiting soft comput-
ing for increased fault tolerance. In Workshop on Architec-
tural Support for Gigascale Integration (ASGI), 2006. URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.78.2997.

[70] Xuanhua Li and Donald Yeung. Application-level correctness and
its impact on fault tolerance. In International Symposium on
High-Performance Computer Architecture (HPCA), 2007. URL
http://dx.doi.org/10.1109/HPCA.2007.346196.

[71] Xuanhua Li and Donald Yeung. Exploiting application-level correctness
for low-cost fault tolerance. Journal of Instruction-Level Parallelism, 2008.
URL http://www.jilp.org/vol10/v10paper10.pdf.

[72] Jinghang Liang, Jie Han, and Fabrizio Lombardi. New metrics for the
reliability of approximate and probabilistic adders. IEEE Transactions
on Computers, 99, 2012.

[73] Ren-Shuo Liu, Chia-Lin Yang, and Wei Wu. Optimizing NAND flash-
based SSDs via retention relaxation. In USENIX Conference on File and
Storage Technologies (FAST), 2012.

[74] Song Liu, Karthik Pattabiraman, Thomas Moscibroda, and Benjamin G.
Zorn. Flikker: Saving refresh-power in mobile devices through critical
data partitioning. In International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2011.

[75] Xiaoxiao Liu, Mengjie Mao, Beiye Liu, Hai Li, Yiran Chen, Boxun Li,
Yu Wang, Hao Jiang, Mark Barnell, Qing Wu, and Jianhua Yang. RENO:
A high-efficient reconfigurable neuromorphic computing accelerator de-
sign. In Design Automation Conference (DAC), 2015.

[76] G. Long, F. T. Chong, D. Franklin, J. Gilbert, and D. Fan. Soft coher-
ence: Preliminary experiments with error-tolerant memory consistency
in numerical applications. In Workshop on Chip Multiprocessor Memory
Systems and Interconnects (CMP-MSI), 2009.

[77] Jan Lucas, Mauricio Alvarez Mesa, Michael Andersch, and Ben Juurlink.
Sparkk: Quality-scalable approximate storage in dram. In The Memory
Forum, 2014.

[78] Chong Luo, Jun Sun, and Feng Wu. Compressive network coding for ap-
proximate sensor data gathering. In IEEE Global Communications Con-
ference (GLOBECOM), 2011.

14

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.78.2997
http://dx.doi.org/10.1109/HPCA.2007.346196
http://www.jilp.org/vol10/v10paper10.pdf

[79] Vikash K. Mansinghka, Eric M. Jonas, and Joshua B. Tenenbaum.
Stochastic digital circuits for probabilistic inference. Technical Report
MIT-CSAIL-TR-2008-069, MIT, 2008.

[80] Lawrence McAfee and Kunle Olukotun. EMEURO: A framework for gen-
erating multi-purpose accelerators via deep learning. In International
Symposium on Code Generation and Optimization (CGO), 2015.

[81] Jiayuan Meng, Srimat Chakradhar, and Anand Raghunathan. Best-effort
parallel execution framework for recognition and mining applications. In
IEEE International Parallel & Distributed Processing Symposium, 2009.

[82] Jiayuan Meng, Anand Raghunathan, Srimat Chakradhar, and Surendra
Byna. Exploiting the forgiving nature of applications for scalable paral-
lel execution. In IEEE International Parallel & Distributed Processing
Symposium, 2010.

[83] Jin Miao. Modeling and synthesis of approximate digital circuits. PhD
thesis, The University of Texas at Austin, 2014.

[84] Jin Miao, Ku He, Andreas Gerstlauer, and Michael Orshansky. Mod-
eling and synthesis of quality-energy optimal approximate adders. In
IEEE–ACM International Conference on Computer-Aided Design (IC-
CAD), 2012.

[85] Joshua San Miguel, Mario Badr, and Natalie Enright Jerger. Load value
approximation. In IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), 2014.

[86] Sasa Misailovic, Deokhwan Kim, and Martin Rinard. Parallelizing se-
quential programs with statistical accuracy tests. Technical Report MIT-
CSAIL-TR-2010-038, MIT, August 2010a.

[87] Sasa Misailovic, Stelios Sidiroglou, Hank Hoffman, and Martin Rinard.
Quality of service profiling. In International Conference on Software En-
gineering (ICSE), 2010b.

[88] Sasa Misailovic, Daniel M. Roy, and Martin C. Rinard. Probabilistically
accurate program transformations. In International Static Analysis Sym-
posium (SAS), 2011.

[89] Sasa Misailovic, Stelios Sidiroglou, and Martin Rinard. Dancing with
uncertainty. In Workshop on Relaxing Synchronization for Multicore and
Manycore Scalability (RACES), 2012.

[90] Sasa Misailovic, Michael Carbin, Sara Achour, Zichao Qi, and Martin C.
Rinard. Chisel: Reliability- and accuracy-aware optimization of approx-
imate computational kernels. In ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), 2014.

15

[91] Debabrata Mohapatra, Vinay K Chippa, Anand Raghunathan, and
Kaushik Roy. Design of voltage-scalable meta-functions for approximate
computing. In Design, Automation and Test in Europe (DATE), 2011.

[92] Thierry Moreau, Mark Wyse, Jacob Nelson, Adrian Sampson, Hadi Es-
maeilzadeh, Luis Ceze, and Mark Oskin. SNNAP: Approximate com-
puting on programmable SoCs via neural acceleration. In International
Symposium on High-Performance Computer Architecture (HPCA), 2015.

[93] Sriram Narayanan, John Sartori, Rakesh Kumar, and Douglas L. Jones.
Scalable stochastic processors. In Design, Automation and Test in Europe
(DATE), 2010.

[94] Krishna Palem and Avinash Lingamneni. What to do about the end of
Moore’s law, probably! In Design Automation Conference (DAC), 2012.

[95] David J. Palframan, Nam Sung Kim, and Mikko H. Lipasti. Precision-
aware soft error protection for GPUs. In International Symposium on
High-Performance Computer Architecture (HPCA), 2014.

[96] Avi Pfeffer. A general importance sampling algorithm for probabilistic
programs. Technical Report TR-12-07, Harvard University, 2007.

[97] A. Rahimi, A. Marongiu, R.K. Gupta, and L. Benini. A variability-aware
OpenMP environment for efficient execution of accuracy-configurable
computation on shared-FPU processor clusters. In IEEE–ACM–IFIP In-
ternational Conference on Hardware/Software Codesign and System Syn-
thesis (CODES+ISSS), 2013.

[98] Amir Rahmati, Matthew Hicks, Daniel E. Holcomb, and Kevin Fu. Prob-
able cause: The deanonymizing effects of approximate DRAM. In Inter-
national Symposium on Computer Architecture (ISCA), 2015.

[99] Norman Ramsey and Avi Pfeffer. Stochastic lambda calculus and monads
of probability distributions. In ACM SIGPLAN–SIGACT Symposium on
Principles of Programming Languages (POPL), 2002.

[100] Ashish Ranjan, Arnab Raha, Swagath Venkataramani, Kaushik Roy, and
Anand Raghunathan. ASLAN: Synthesis of approximate sequential cir-
cuits. In Design, Automation and Test in Europe (DATE), 2014.

[101] Ashish Ranjan, Swagath Venkataramani, Xuanyao Fong, Kaushik Roy,
and Anand Raghunathan. Approximate storage for energy efficient spin-
tronic memories. In Design Automation Conference (DAC), 2015.

[102] Benjamin Recht, Christopher Re, Stephen J. Wright, and Feng Niu. Hog-
wild: A lock-free approach to parallelizing stochastic gradient descent. In
Conference on Neural Information Processing Systems (NIPS), 2011.

16

[103] Lakshminarayanan Renganarayanan, Vijayalakshmi Srinivasan, Ravi
Nair, and Daniel Prener. Programming with relaxed synchronization.
In Workshop on Relaxing Synchronization for Multicore and Manycore
Scalability (RACES), 2012.

[104] Michael F. Ringenburg, Adrian Sampson, Isaac Ackerman, Luis Ceze,
and Dan Grossman. Monitoring and debugging the quality of results
in approximate programs. In International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2015.

[105] Pooja Roy, Rajarshi Ray, Chundong Wang, and Weng Fai Wong. ASAC:
Automatic sensitivity analysis for approximate computing. In ACM
SIGPLAN–SIGBED Conference on Languages, Compilers, Tools and
Theory for Embedded Systems (LCTES), 2014.

[106] Sourya Roy, Tyler Clemons, S M Faisal, Ke Liu, Nikos Hardavellas, and
Srinivasan Parthasarathy. Elastic fidelity: Trading-off computational ac-
curacy for energy reduction. Technical Report NWU-EECS-11-02, North-
western University, 2011.

[107] Cindy Rubio-González, Cuong Nguyen, Hong Diep Nguyen, James Dem-
mel, William Kahan, Koushik Sen, David H. Bailey, Costin Iancu, and
David Hough. Precimonious: Tuning assistant for floating-point precision.
In International Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC), 2013.

[108] Mastooreh Salajegheh, Yue Wang, Kevin Fu, Anxiao Jiang, and Erik
Learned-Miller. Exploiting half-wits: Smarter storage for low-power de-
vices. In USENIX Conference on File and Storage Technologies (FAST),
2011.

[109] Mehrzad Samadi, Janghaeng Lee, D. Anoushe Jamshidi, Amir Hormati,
and Scott Mahlke. Sage: Self-tuning approximation for graphics engines.
In IEEE/ACM International Symposium on Microarchitecture (MICRO),
2013.

[110] Mehrzad Samadi, Davoud Anoushe Jamshidi, Janghaeng Lee, and Scott
Mahlke. Paraprox: Pattern-based approximation for data parallel appli-
cations. In International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), 2014.

[111] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapra-
gasam, Luis Ceze, and Dan Grossman. EnerJ: approximate data types
for safe and general low-power computation. In ACM Conference on Pro-
gramming Language Design and Implementation (PLDI), 2011.

[112] Adrian Sampson, Jacob Nelson, Karin Strauss, and Luis Ceze. Approxi-
mate storage in solid-state memories. In IEEE/ACM International Sym-
posium on Microarchitecture (MICRO), 2013.

17

[113] Sriram Sankaranarayanan, Aleksandar Chakarov, and Sumit Gulwani.
Static analysis for probabilistic programs: Inferring whole program prop-
erties from finitely many paths. In ACM Conference on Programming
Language Design and Implementation (PLDI), 2013.

[114] John Sartori and Rakesh Kumar. Branch and data herding: Reducing
control and memory divergence for error-tolerant GPU applications. In
International Conference on Parallel Architectures and Compilation Tech-
niques (PACT), 2012.

[115] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic optimization
of floating-point programs with tunable precision. In ACM Conference on
Programming Language Design and Implementation (PLDI), 2014.

[116] Eric Schulte, Jonathan Dorn, Stephen Harding, Stephanie Forrest, and
Westley Weimer. Post-compiler software optimization for reducing energy.
In International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2014.

[117] Sayandeep Sen, Syed Gilani, Shreesha Srinath, Stephen Schmitt, and
Suman Banerjee. Design and implementation of an “approximate” com-
munication system for wireless media applications. In ACM SIGCOMM ,
2010.

[118] Muhammad Shafique, Waqas Ahmad, Rehan Hafiz, and Jörg Henkel. A
low latency generic accuracy configurable adder. In Design Automation
Conference (DAC), 2015.

[119] Q. Shi, H. Hoffmann, and O. Khan. A HW-SW multicore architecture to
tradeoff program accuracy and resilience overheads. Computer Architec-
ture Letters, 2014.

[120] Majid Shoushtari, Abbas BanaiyanMofrad, and Nikil Dutt. Exploiting
partially-forgetful memories for approximate computing. IEEE Embedded
Systems Letters, 7 (1): 19–22, March 2015.

[121] Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and Mar-
tin C. Rinard. Managing performance vs. accuracy trade-offs with loop
perforation. In ACM SIGSOFT Symposium on the Foundations of Soft-
ware Engineering (FSE), 2011.

[122] J. Sloan, D. Kesler, R. Kumar, and A. Rahimi. A numerical optimization-
based methodology for application robustification: Transforming appli-
cations for error tolerance. In IEEE–IFIP International Conference on
Dependable Systems and Networks (DSN), 2010.

[123] Jacob Sorber, Alexander Kostadinov, Matthew Garber, Matthew Bren-
nan, Mark D. Corner, and Emery D. Berger. Eon: A language and run-
time system for perpetual systems. In ACM Conference on Embedded
Networked Sensor Systems (SenSys), 2007.

18

[124] Renée St. Amant, Amir Yazdanbakhsh, Jongse Park, Bradley Thwaites,
Hadi Esmaeilzadeh, Arjang Hassibi, Luis Ceze, and Doug Burger. General-
purpose code acceleration with limited-precision analog computation. In
International Symposium on Computer Architecture (ISCA), 2014.

[125] Phillip Stanley-Marbell. Encoding efficiency of digital number represen-
tations under deviation constraints. In Information Theory Workshop
(ITW), 2009.

[126] Phillip Stanley-Marbell and Diana Marculescu. A pro-
gramming model and language implementation for concur-
rent failureprone hardware. In Workshop on Programming
Models for Ubiquitous Parallelism (PMUP), 2006. URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.121.9864.

[127] Phillip Stanley-Marbell and Martin Rinard. Lax: Driver interfaces for
approximate sensor device access. In USENIX Workshop on Hot Topics
in Operating Systems (HotOS), 2015.

[128] Ayswarya Sundaram, Ameen Aakel, Derek Lockhart, Darshan Thaker,
and Diana Franklin. Efficient fault tolerance in multi-media applications
through selective instruction replication. In Workshop on Radiation Effects
and Fault Tolerance in Nanometer Technologies, 2008.

[129] Olivier Temam. A defect-tolerant accelerator for emerging high-
performance applications. In International Symposium on Computer Ar-
chitecture (ISCA), 2012.

[130] Darshan D. Thaker, Diana Franklin, John Oliver, Susmit Biswas, Derek
Lockhart, Tzvetan S. Metodi, and Frederic T. Chong. Characterization of
error-tolerant applications when protecting control data. In IEEE Inter-
national Symposium on Workload Characterization (IISWC), 2006.

[131] Anna Thomas and Karthik Pattabiraman. Llfi: An intermediate code
level fault injector for soft computing applications. In Workshop on Silicon
Errors in Logic: System Effects (SELSE), 2013.

[132] Bradley Thwaites, Gennady Pekhimenko, Amir Yazdanbakhsh, Jongse
Park, Girish Mururu, Hadi Esmaeilzadeh, Onur Mutlu, and Todd Mowry.
Rollback-free value prediction with approximate loads. In Interna-
tional Conference on Parallel Architectures and Compilation Techniques
(PACT), 2014.

[133] Jonathan Ying Fai Tong, David Nagle, and Rob. A. Rutenbar. Reduc-
ing power by optimizing the necessary precision/range of floating-point
arithmetic. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 8 (3), 2000.

19

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.121.9864

[134] Hung-Wei Tseng, Laura M. Grupp, and Steven Swanson. Underpowering
NAND flash: Profits and perils. In Design Automation Conference (DAC),
2013.

[135] G. Tziantzioulis, A. M. Gok, S. M. Faisal, N. Hardavellas, S. Ogrenci-
Memik, and S. Parthasarathy. b-HiVE: A bit-level history-based error
model with value correlation for voltage-scaled integer and floating point
units. In Design Automation Conference (DAC).

[136] Swagath Venkataramani, Amit Sabne, Vivek Kozhikkottu, Kaushik Roy,
and Anand Raghunathan. SALSA: Systematic logic synthesis of approxi-
mate circuits. In Design Automation Conference (DAC), 2012.

[137] Swagath Venkataramani, Kaushik Roy, and Anand Raghunathan.
Substitute-and-simplify: A unified design paradigm for approximate and
quality configurable circuits. In Design, Automation and Test in Europe
(DATE), 2013.

[138] Swagath Venkataramani, Anand Raghunathan, Jie Liu, and Mohammed
Shoaib. Scalable-effort classifiers for energy-efficient machine learning. In
Design Automation Conference (DAC), 2015.

[139] Rangharajan Venkatesan, Amit Agarwal, Kaushik Roy, and Anand
Raghunathan. MACACO: Modeling and analysis of circuits for approxi-
mate computing. In IEEE–ACM International Conference on Computer-
Aided Design (ICCAD), 2011.

[140] Ajay K. Verma, Philip Brisk, and Paolo Ienne. Variable latency specula-
tive addition: A new paradigm for arithmetic circuit design. In Design,
Automation and Test in Europe (DATE), 2008.

[141] Benjamin Vigoda, David Reynolds, Jeffrey Bernstein, Theophane Weber,
and Bill Bradley. Low power logic for statistical inference. In International
Symposium on Low Power Electronics and Design (ISLPED), 2010.

[142] Lucas Wanner and Mani Srivastava. ViRUS: Virtual function replacement
under stress. In USENIX Workshop on Power-Aware Computing and
Systems (HotPower), 2014.

[143] M. Weber, M. Putic, Hang Zhang, J. Lach, and Jiawei Huang. Balancing
adder for error tolerant applications. In IEEE International Symposium
on Circuits and Systems (ISCAS), 2013.

[144] Edwin Westbrook and Swarat Chaudhuri. A semantics for approximate
program transformations. Technical Report Preprint: arXiv:1304.5531,
2013.

[145] David Wingate, Andreas Stuhlmüller, and Noah D. Goodman.
Lightweight implementations of probabilistic programming languages via
transformational compilation. In International Conference on Artificial
Intelligence and Statistics (AISTATS), 2011.

20

[146] Vicky Wong and Mark Horowitz. Soft error resilience of probabilistic
inference applications. In Workshop on Silicon Errors in Logic: System
Effects (SELSE), 2006.

[147] A. Yazdanbakhsh, D. Mahajan, B. Thwaites, Jongse Park, A. Nagen-
drakumar, S. Sethuraman, K. Ramkrishnan, N. Ravindran, R. Jariwala,
A. Rahimi, H. Esmaeilzadeh, and K. Bazargan. Axilog: Language sup-
port for approximate hardware design. In Design, Automation and Test
in Europe (DATE), 2015.

[148] Rong Ye, Ting Wang, Feng Yuan, Rakesh Kumar, and Qiang Xu. On
reconfiguration-oriented approximate adder design and its application. In
IEEE–ACM International Conference on Computer-Aided Design (IC-
CAD), 2013.

[149] Thomas Y. Yeh, Petros Faloutsos, Milos Ercegovac, Sanjay J. Patel, and
Glen Reinman. The art of deception: Adaptive precision reduction for area
efficient physics acceleration. In IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2007.

[150] Thomas Y. Yeh, Glenn Reinman, Sanjay J. Patel, and Petros Faloutsos.
Fool me twice: Exploring and exploiting error tolerance in physics-based
animation. ACM Transactions on Graphics, 29 (1), December 2009.

[151] Yavuz Yetim, Margaret Martonosi, and Sharad Malik. Extracting useful
computation from error-prone processors for streaming applications. In
Design, Automation and Test in Europe (DATE), 2013.

[152] Yavuz Yetim, Sharad Malik, and Margaret Martonosi. CommGuard: Mit-
igating communication errors in error-prone parallel execution. In Inter-
national Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2015.

[153] Qian Zhang, Feng Yuan, Rong Ye, and Qiang Xu. ApproxIt: An approx-
imate computing framework for iterative methods. In Design Automation
Conference (DAC), 2014.

[154] Ning Zhu, Wang Ling Goh, and Kiat Seng Yeo. An enhanced low-power
high-speed adder for error-tolerant application. In International Sympo-
sium on Integrated Circuits (ISIC), 2009.

[155] Zeyuan Allen Zhu, Sasa Misailovic, Jonathan A. Kelner, and Martin C.
Rinard. Randomized accuracy-aware program transformations for efficient
approximate computations. In ACM SIGPLAN–SIGACT Symposium on
Principles of Programming Languages (POPL), 2012.

21

	1. Overview
	2. Approximation Techniques
	2.1. In Architecture
	2.1.1. Functional Units
	2.1.2. Memory
	2.1.3. Circuit Design
	2.1.4. Relaxed Fault Tolerance
	2.1.5. Microarchitecture
	2.1.6. Stochastic Computing

	2.2. In Software
	2.3. In Other Systems

	3. Programming with Approximation
	3.1. Approximate Languages
	3.2. Programmer Tools
	3.3. Probabilistic Languages
	3.4. Robustness Analysis
	3.5. Application Tolerance Studies
	3.6. Security

