
DOT APPROX: Making a Case for Dynamic Online
Training for Function Approximation Techniques

Aurangzeb Rudolf Eigenmann
Purdue University

{orangzeb, eigenman}@purdue.edu

Abstract
Function approximation techniques generally need training to col-
lect information about the function under consideration. The qual-
ity of approximation may be negatively affected if the information
gathered during training is not sufficient or is not representative
of the function behavior during actual production runs. This pa-
per discusses different possible training scenarios for approxima-
tion schemes. It presents a case study and advocates for dynamic
online training (DOT) for function approximation. It also presents
two DOT scenarios developed for a function approximation scheme
and describes their effect on two applications.

1. Introduction
Software approximation techniques that work at coarse granularity
and treat the entire application or a module, function or block as
a unit for approximation, normally require training. This training
is generally aimed at collecting actual input-output history of the
module under consideration, to help approximate it for inputs dur-
ing production. The techniques may analyze this information and
infer other properties such as granularity, pattern, variations, and
behavior of inputs and outputs. The training history, together with
any inferred information, helps the schemes perform approxima-
tion. In this paper, we will be focusing on such schemes for function
approximation, among which are approximate memoization and
history-based piecewise approximation. However, the discussion is
applicable to all general schemes that work at coarse granularity
treating the underlying module as a black-box. The approximate
memoization technique described in [3] stores the training input-
output history of the function in a table which is accessed during
production for memoized values. For unrecorded inputs, either the
neighboring output is returned or interpolation is performed. The
history-based piecewise scheme [1] divides the overall input range
of the function in different regions based on the training history and
performs low-order polynomial approximation in each region.

There are different options for training scenarios and they can
affect performance and accuracy of approximation. Choosing a
right training scenario is as important as choosing the right approx-
imation scheme. We describe different training scenarios and ad-
vocate for dynamic online training (DOT), considering its features
that make it the most desirable training scenario among others. We
also present a case study and give results of using the DOT scenar-
ios we developed for the history-based piecewise approximation
scheme for functions.

2. Training Scenarios
There are different training scenarios possible as depicted in Figure
1. Training can be done offline - via a profile run, or online - dur-
ing the actual production run of the application. In the latter case,

it can be static - done at the beginning of the application execution,
or dynamic. In case of dynamic online training (DOT), there can be
different starting options for frequency, timing, and length of each
training phase and these parameters may be tuned during the appli-
cation lifetime. The choice of a training scenario and its parameters
(length, frequency, and timing) affect, both, the approximation re-
sults as well as the performance of the approximation scheme. So
it is important to choose a scenario which facilitates the underlying
approximation scheme in achieving better results.

3. Making a Case for DOT
The quality of approximation depends on the quantity and quality
of information gathered from training. By quality of information,
we mean, how representative the training is of the actual applica-
tion behavior during production. DOT turns out to be better than the
other training scenarios in terms of collecting information which is
of the right quantity and quality to help produce better approxima-
tion results. But it may have an associated overhead due to moni-
toring that may affect performance. While the general goal of ap-
proximation is to trade-off accuracy for performance, DOT seeks
to improve the accuracy of approximation for some possible loss in
performance to make the approximation results acceptable.

3.1 Quality of Training Information
In general, online training is better than offline training, because
for some applications, the inputs in the actual production run of
an application may be significantly different than the ones in the
profile or an earlier run of the application. Likewise, information
obtained statically at the beginning of an application execution may
not be a true representative of the behavior throughout the lifetime
of the application, as the behavior can significantly change over the
course of time. DOT is a superior training scenario in the sense that
it can capture the true application behavior throughout the lifetime
of an application.

Figure 1. Training scenarios for function approximation schemes



3.2 Quantity of Training Information
Offline and static online training may require multiple trial runs
with different training lengths to come up with a training history
that adequately captures the behavior of an application. This pro-
cess needs to be repeated for each application. Offline training is
more expensive in this regard, as it requires extra profile runs to
collect information. Sometimes, this overhead is not reported while
mentioning the resulting application performance, as in [3], but it is
a major and expensive part of the scheme. While insufficient infor-
mation clearly affects approximation, having too much extra train-
ing can be undesirable as well. As it can affect the performance
(more calls to original function) as well as the memory used in stor-
ing history. The latter may be a concern for memory-constrained
systems and applications. DOT, on the other hand, seeks to collect
the most relevant information and improve training history during
the application lifetime. This self-improving nature of DOT makes
it more general and more desirable than the other schemes. In some
cases, when its starting parameters are too off to be improved dur-
ing the application lifetime, it may also require additional attempts,
but, in general, they will be fewer than those for other training sce-
narios.

4. A Case Study
This section presents a case study of a Convolutional Neural Net-
work (CNN) application for handwritten digit detection (CNN-
HDD) to highlight the importance of DOT. The activation function
(tanh) of this application is amenable to approximation. This func-
tion is called 8,010,000 times during the application execution with
input values in the range -26.5 to 22.5. We experimented with this
application using the history-based uniform piecewise scheme [1]
and used equidistant inputs. For a history size of 700, the percent-
age error in detecting images is 91%, if the inputs are in the range:
-26.5 to 0. Although 56% of all actual inputs fall in this range but
the scheme does very poor if these are used in training. For train-
ing inputs in the range 0 to 22.5, which encompasses 44% of all
inputs, the percentage error is 79.4%. For inputs in the range -0.5
to 0.5, which consists of 31% of all inputs, the percentage error
in image detection is 69%. But if inputs from the range -0.75 to
0.75, which covers about 40% of all inputs, are used for training,
the percentage error gets significantly reduced to 6%. Inputs from a
certain range seem to contain more useful information for approx-
imation compared to others. A scheme that is treating the function
as a black-box and not employing DOT will not be able to figure
this out. It will only have to rely on the sequence of inputs during
training which may or may not contain sufficient inputs from this
useful range depending on the training length. By contrast, DOT
will be able to include more pertinent inputs in the training his-
tory. By extending the training time, other schemes may be able
to collect similar information, but will incur overheads in terms of
performance and memory usage. DOT will achieve better results
compared to other scenarios and with less history elements.

We enhanced the history-based non-uniform piecewise scheme
realized via a binary search tree [1] with a DOT scenario to com-
pare it with its static counterpart. In this scenario, the initial training
of some length is performed at the beginning of application execu-
tion. The system re-enters the training phase on every nth function
call. It stays in the training phase until a given percentage of in-
puts in the training window produce acceptable results. The value
of n, size of training window, percentage of inputs in training win-
dow required to produce acceptable results to get out of training,
and the acceptable error in results, are configurable parameters.
The scheme can optionally improve some of the parameters during
the application lifetime. Figure 2 compares DOT with static online
training for the CNN-HDD application for the said approximation

Figure 2. DOT vs. static online training for CNN-HDD using
history-based non-uniform scheme realized via a binary search tree

Figure 3. Effect of frequency of dynamic update on speedup and
RMS error for the Blackscholes application

scheme. DOT helps achieve better approximation compared to its
static counterpart for the same number of history elements with a
slightly less speedup because of monitoring overhead (as there are
more calls to the original function). The parameters used in the
scheme are: initial training of length 15; training window of size 3;
70% of inputs in training window required to produced acceptable
results; frequency of training (n) set to 1,000,000; and acceptable
error varied between 0.03 and 0.15.

The DOT scenario described above is just one example and
other variants are possible. Even a simple scenario in which train-
ing history is updated once every nth function call after the initial
training, may improve approximation for some applications. Fig-
ure 3 shows how this scenario can affect speedup and performance
as the frequency of update is varied (more update helps improve
results at the cost of some loss in performance) for the Blacksc-
holes application from the Parsec Benchmark Suite [2]. But DOT
scenarios that are more sophisticated in their mechanism of trying
to find the most pertinent and useful training information and are
self-improving would be more desirable because of their wider ap-
plicability and effectiveness.

5. Conclusion
Coarser-granularity black-box approximation techniques rely on
training information. The quality and quantity of training infor-
mation can affect both, approximation results and performance.
Choosing a suitable approximation scheme is important and so is
choosing a suitable training scenario. DOT should be preferred over
other scenarios as it can be general and self-improving. It can also
provide pertinent training information that is both sufficient and
representative of the application behavior during the production
run, thus achieving better results.



References
[1] Aurangzeb and R. Eigenmann. History-based piecewise approximation

scheme for procedures. 2nd Workshop on Approximate Computing
(WAPCO), Jan 2016.

[2] C. Bienia and K. Li. Benchmarking modern multiprocessors. Princeton
University USA, 2011.

[3] M. Samadi, D. A. Jamshidi, J. Lee, and S. Mahlke. Paraprox: Pattern-
based approximation for data parallel applications. In ACM SIGARCH
Computer Architecture News, volume 42, pages 35–50. ACM, 2014.


