
Overcoming the Data-flow Limit on Parallelism with Structural
Approximation

Vignesh Balaji
Carnegie Mellon University
vigneshb@andrew.cmu.edu

Brandon Lucia
Carnegie Mellon University

blucia@andrew.cmu.edu

Radu Marculescu
Carnegie Mellon University

radum@andrew.cmu.edu

I. INTRODUCTION

Research in approximate computing is based on the ob-
servation that many important emerging applications tolerate
errors. Their resilience allows system designers to deliber-
ately execute programs imprecisely in a way that increases
performance or decreases energy consumed. There are many
examples of such error-performance tradeoffs in approximate
computing literature [3], [1], [4], [9], [13], [10], [6].

The main idea driving most of these prior approximate
computing efforts is that output values are approximable.
These systems exploit that property through what we refer to
as value approximation. Value approximation reduces the pre-
cision of [13], [10], [6], [12], or directly approximates [3], [1]
a computation, producing approximate output values. Recent
work extended the idea of value approximation to incorporate
manipulations of algorithmic convergence criteria [9] and we
refer to this extended approach as convergence approximation.

The unifying characteristic of all of these techniques is that
they only approximate single values or collections of values for
which a numerical comparison to a precise baseline is possible.
The error induced by the approximation is a simple, numerical
quantity. Approximating only simple, numeric quantities is
a fundamental limitation of prior approaches to approximate
computing.

It is our position that future computer systems should go
beyond simply approximating values, also approximating the
consistency properties of the data structures in a program. We
refer to this approach as Structural Approximation (SA).

The core idea of SA is that applications can continue to
execute even when their data structures are slightly “damaged”
(i.e., inconsistent with their structural specification). We an-
ticipate that through a combination of inherent application
resiliance to damage, and surgically applied mitigations to
damage, we can aggressively optimize data structure manip-
ulations by making them approximate. However, to make
our approximations useful, SA demands a new definition of
correctness that allows systematically reasoning about the
severity of structural inconsistency.

The motivation for SA is accelerating parallel computations
that manipulate shared data structures. Parallel computations
spend substantial time and energy to enforce structural con-
sistency by moving data and synchronizing to serialize com-
putations. As others have noted in specific instances [5], [8],
the need to move data and synchronize is a manifestation of
the parallel data-flow limit on a computation’s performance.
After aggressive precise optimization, value and convergence
approximations, synchronization and data movement are the
last impediments to improved parallel performance. Eliminat-

ing synchronization and data movement lead to inconsistency
in both values and structures. We propose that SA is the key to
overcoming the parallel data-flow limit. By selectively elim-
inating (i.e., by approximating) a program’s synchronization
and data movement and permitting inconsistencies, SA equips
a system to overcome the final barrier to parallel performance.

II. THE PROMISE OF SA
The purpose of this paper is to describe SA and to quantify

its potential for improving parallel performance for a collection
of data-flow-limited parallel applications. We conducted a
limit study and our results are in Figure 1. In our study, we
charted parallel speedup as core count increases, as predicted
by Amdahl’s Law. We compared that prediction to measured
performance in a custom, Pin-based multi-processor simulator
with several application configurations. The first configuration
was a “normal”, fully-precise execution, in which we execute
all synchronization operations and all cache coherence opera-
tions, keeping all data precisely consistent.

We then applied a “limit case” of value approximation,
whenever it was possible to do so without causing the applica-
tion to crash. To implement value approximation, we removed
all locks protecting data values whose imprecision did not
cause a crash. We also eliminated the modeled cost of all cache
coherence operations, simulating complete elision of coherence
(which would leave values approximate, at least).

We applied convergence approximation to only one bench-
mark, K-Means [7]. To do so, we removed synchronization
on data used to decide convergence, effectively eliminating
the reduction operation that computes the application’s con-
vergence criterion. Eliminating the reduction is, in effect,
a limit case of Paraprox’s reduction approximation [9]. In
addition to convergence approximation, we also applied value
approximation, eliminating coherence and some value-only
synchronization.

The results in Figure 1 illustrate several interesting connec-
tions between approximation and parallel performance. First,
we note that in the Key-Value Store — and in the majority
of numerical approximation targets in the literature [11], [6],
[13], [3] — value approximation never causes a crash and,
with no synchronization or data movement costs, the limit
performance approaches the Amdahl limit. Second, we note
that in K-Means, reducing results to determine convergence
limits performance. Eliminating the expensive, synchronizing
convergence computation eliminates serialization and waiting,
pushing parallel performance scaling to the Amdahl limit.

Third, and most importantly, we see that the performance of
PageRank, SSSP, and BFS — even after value approximation



(a) K-Means (b) Key-Value Store

(c) Page Rank (d) SSSP (e) BFS

Fig. 1: Performance improvement in different applications due to approximations

— is far from the theoretical limit. This performance gap is
due to the synchronization left in these programs that we were
unable to eliminate for this limit study. These synchronization
operations are the ones that enforce structural correctness and
they hamper parallel performance scaling, leaving it far below
the Amdahl limit.

Unfortunately, without these structural synchronization op-
erations, the applications crash because today’s systems do not
gracefully handle inconsistent data structures. To make these
structural approximations viable, we need a new definition of
data structure correctness that gracefully handles inconsistency
without crashes.

III. THE NEED FOR A NEW CORRECTNESS DEFINITION

Figure 1 shows the potential performance improvement
of SA. A key facet to making SA a useful approximation
mechanism is to develop a new definition of correctness that
defines structural states permitted under SA.

Existing definitions of correctness under approximation are
based on comparing the outputs of an approximate execution
with one from a precise execution. We note that this correct-
ness definition is useful only for value approximations.

We need to relax this definition of correctness to reason
about SA executions that may have inconsistent data structures.
The main reason we need such a relaxed definition is that
existing definitions will typically terminate executions in many
situations that stem from inconsistencies. For example, if an
inconsistency leaves a link in a linked structure unassigned,
an execution may terminate with a null pointer exception. A
correctness definition for SA should permit inconsistencies by
definition, even with, e.g., unassigned links.

With a relaxed correctness definition that permits inconsis-
tencies, we envision a need to modify the execution model
to accommodate structural inconsistency. One approach is

to do nothing. This strategy is a gamble that, despite the
inconsistency, executing code will make observations of and
modifications to data structures that are reasonable. We expect
that combining this approach with a quantification of error
(e.g., number of unassigned links) may help determine when
a structure is usable, or has become too inconsistent.

An alternative is to leverage data structure repair [2]. If a
system using SA periodically, dynamically repairs broken data
structures, it would reduce the possibility that structural incon-
sistencies are unrecoverable. One challenge to this approach is
reducing the dynamic cost of repairing data structures and we
expect that offloading repair computations to the cloud is a
promising path.

Another possibility is to define data-structure-specific re-
siliant operators that do not cause a crash, even when working
on a broken data structure. We expect resiliant operators to rely
on tactics similar to manual defensive programming. Resiliant
operators effectively broaden the set of allowed data structure
states without failure, allowing aggressive SA. Combining
resiliant operators with repair affords parallelizing repair work
with the application’s manipulations of the structure.

IV. CONCLUSION

In this paper, we presented a new form of approxima-
tion called Structural Approximation. We motivated the need
for SA by quantitatively estimating the opportunity missed
by existing approximation strategies. Our limit study results
show that breaking the invariant that an application’s data
structure must be consistent at all times has potential for
massive improvements. However, in order to ensure useful
approximations, we identified the need to come up with new
definitions of correctness, and proposed several directions for
future work toward realizing SA.



REFERENCES

[1] B. Belhadj, A. Joubert, Z. Li, R. Héliot, and O. Temam. Continuous
real-world inputs can open up alternative accelerator designs. In
Proceedings of the 40th Annual International Symposium on Computer
Architecture, ISCA ’13, pages 1–12, New York, NY, USA, 2013. ACM.

[2] B. Elkarablieh, I. Garcia, Y. L. Suen, and S. Khurshid. Assertion-
based repair of complex data structures. In Proceedings of the Twenty-
second IEEE/ACM International Conference on Automated Software
Engineering, ASE ’07, pages 64–73, New York, NY, USA, 2007. ACM.

[3] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Neural
acceleration for general-purpose approximate programs. In Proceedings
of the 2012 45th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-45, pages 449–460, Washington, DC, USA,
2012. IEEE Computer Society.

[4] D. S. Khudia, B. Zamirai, M. Samadi, and S. Mahlke. Rumba: An online
quality management system for approximate computing. In Proceedings
of the 42nd Annual International Symposium on Computer Architecture,
ISCA ’15, pages 554–566, New York, NY, USA, 2015. ACM.

[5] M. H. Lipasti and J. P. Shen. Exceeding the dataflow limit via
value prediction. In Proceedings of the 29th Annual ACM/IEEE
International Symposium on Microarchitecture, MICRO 29, pages 226–
237, Washington, DC, USA, 1996. IEEE Computer Society.

[6] S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. C. Rinard.
Chisel: Reliability- and accuracy-aware optimization of approximate
computational kernels. In Proceedings of the 2014 ACM International
Conference on Object Oriented Programming Systems Languages &
Applications, OOPSLA ’14, pages 309–328, New York, NY, USA,
2014. ACM.

[7] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik, and A. Choud-

hary. Minebench: A benchmark suite for data mining workloads. In
Workload Characterization, 2006 IEEE International Symposium on,
pages 182–188, Oct 2006.

[8] M. Rinard. Parallel synchronization-free approximate data structure
construction. In Presented as part of the 5th USENIX Workshop on
Hot Topics in Parallelism, Berkeley, CA, 2013. USENIX.

[9] M. Samadi, D. A. Jamshidi, J. Lee, and S. Mahlke. Paraprox: Pattern-
based approximation for data parallel applications. In Proceedings
of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’14, pages
35–50, New York, NY, USA, 2014. ACM.

[10] A. Sampson, A. Baixo, B. Ransford, T. Moreau, J. Yip, L. Ceze, and
M. Oskin. Accept: A programmer-guided compiler framework for
practical approximate computing. University of Washington Technical
Report UW-CSE-15-01, 1, 2015.

[11] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman. Enerj: Approximate data types for safe and general
low-power computation. In Proceedings of the 32Nd ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’11, pages 164–174, New York, NY, USA, 2011. ACM.

[12] A. Sampson, J. Nelson, K. Strauss, and L. Ceze. Approximate storage
in solid-state memories. ACM Trans. Comput. Syst., 32(3):9:1–9:23,
Sept. 2014.

[13] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard.
Managing performance vs. accuracy trade-offs with loop perforation. In
Proceedings of the 19th ACM SIGSOFT Symposium and the 13th Euro-
pean Conference on Foundations of Software Engineering, ESEC/FSE
’11, pages 124–134, New York, NY, USA, 2011. ACM.


	Introduction
	The Promise of SA
	The need for a new correctness definition
	Conclusion
	References

