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1. Problem and Motivation
Estimation is common to many computational problems. “Where are
the person’s eyes in this photo?”, “At what time in this audio record-
ing does the interviewee accidentally swear?”, and “How many
calories are in the food shown in this image?” are questions where
the answer is an estimate of an unknown real value. Estimates are
fundamentally approximate. Machine learning-based techniques are
capable of producing some estimates, but developing and using such
software typically requires expert domain knowledge. Surprisingly,
non-expert groups of people are also capable of producing accurate
estimates. This phenomenon, known as the wisdom of the crowds,
holds promise in making estimation tasks accessible to ordinary
programmers.

We introduce WOCMAN, a domain-specific language (DSL)
designed to make it easy for programmers to obtain high-quality
estimates from the crowd. WOCMAN obtains interval estimates over
arbitrary user-defined functions of crowd responses. Programmers
declare their desired precision and budget, and WOCMAN iteratively
increases the sample size until either the estimate is sufficiently
refined or the budget is exhausted. We demonstrate with a “calorie
counting camera” app.

2. Background and Related Work
Machine Learning. Techniques from machine learning are in
some cases capable of answering estimation queries, but developing
and using such software typically requires expert knowledge [2, 15].
The difficulty is compounded by the fact that most algorithms require
ground truth training data [8]. Such data is frequently obtained via
crowdsourcing.

The Wisdom of the Crowds. Crowdsourcing suggests a promis-
ing approach. Galton noted that “the middlemost value” of a large
number of estimates is often a better estimate of the true value than
any individual’s judgement, even when respondents are experts [7].
Estimation theory provides a principled basis for aggregating re-
sponses [14], but requires competence in statistics. Crowdsourcing
compounds the difficulty since programmers must pay workers,
address low-quality or wrong responses, and timeouts [12].

Prior work incorporates crowdsourcing into ordinary programs
in a variety of ways. While some have built-in quality control
mechanisms, none address quality control for continuous random
variables [3–5, 9–11].

Contributions. WOCMAN is the first crowdsourcing language
to address quality for estimation tasks. WOCMAN significantly
extends our prior work on AUTOMAN, a DSL that abstracts crowd-
sourcing as ordinary function calls [3]. WOCMAN augments AU-
TOMAN to handle continuous random variables. By default, AU-
TOMAN provides quality control for discrete random variables.
The difference is how crowd consensus is reached. Intuitively, AU-

Figure 1. One of 208 school lunch images labeled with ground
truth nutritional data.

TOMAN’s quality control requires agreement on a particular answer
(e.g., “Does this picture contain a giraffe?”) whereas WOCMAN
requires only that answers are in the same ballpark (e.g., “How much
does this ox weigh in lbs?”). WOCMAN inherits AUTOMAN’s auto-
matic pricing, scheduling, and i.i.d. sampling guarantees.

3. Approach and Uniqueness
Programmers specify estimation tasks declaratively in Scala. The
following shows a task specification that makes a task callable as
an ordinary function. Note that the following specifies a query, a
budget, a (symmetric) confidence interval (CI) width, and with the
default confidence level of 0.95.

def numCalories(url: String) = Estimate (
budget = 5.00,
confidence_interval = SymmetricCI(100),
text = "How many calories are in the food

pictured?",
image_url = url

)

The goal of WOCMAN is to estimate an unknown parameter θ
of an unknown distribution F of crowd responses on space X . Let
X = (x1, . . . , xn) be a real-valued, i.i.d. sample of responses from
F of size n.



Figure 2. The number of workers (sample size) required by x% of
tasks to reach confidence. Each line represents a distinct confidence
setting. Higher confidence settings require more workers. Note:
y-axis is log-scale.

Point Estimation. Let θ̂(X) be an arbitrary real-valued statistic
(a function of X), the point estimate of θ.

Interval Estimation. The fact that θ̂ is an arbitrary, user-defined
function over an unknown distribution F complicates interval esti-
mation since precise confidence bounds are only known for specific
statistics (e.g., the mean) of known distributions (e.g., the normal dis-
tribution). Nonetheless, so-called non-parametric methods, which
relax parametric assumptions, can be used to estimate arbitrary θ̂
with surprising accuracy [16].

We use the basic bootstrap procedure to estimate parameters [1].
The bootstrap produces an estimate of parameter θ, denoted θ̂∗,
by way of the estimator θ̂ and random replicates of X that we
denote X∗. Let F̂ be the empirical distribution such that each
x ∈ X contributes 1/n mass. Let B be the number of bootstrap
replications. For each b from 1 . . . B, a bootstrap sample X∗

b is
drawn from F̂ randomly with replacement and used to compute
the bth bootstrap replication θ̂∗(b). For many parameters, bootstrap
estimates converge quickly, and in the presence of small deviations
from parametric assumptions, are often more accurate and converge
faster [6].

The percentile method is used to calculate the CI [6]. Let θ̂(α) =
ĈDF

−1
(α), a function that returns the real value corresponding

to the (1 − α) · 100th percentile of bootstrap replicates θ̂∗. Thus
θ ∈ [θ̂(α), θ̂(1− α)]. As n→∞, [θ̂(α), θ̂(1− α)] will include θ
with probability 1− α.

Sample Size Determination. WOCMAN’s default sample size is 8.
There are two outcomes after sampling: 1) the CI satisfies the user’s
width and confidence level, or 2) it does not. If 1), WOCMAN returns
the estimate and CI. Otherwise, it refines by obtaining another
sample from the crowd. WOCMAN doubles the sample size after
each iteration.

The bound estimated by WOCMAN may accurately reflect the
true variability of the population but not meet user constraints. Thus
the budget parameter serves as a limiting factor on the total sample
size, ensuring that estimation always terminates at a reasonable cost.

4. Preliminary Results
We evaluated WOCMAN using a data set of 208 school lunch photos
paired with ground truth nutritional data (Fig. 1). WOCMAN was

run with a fixed CI width of 100 calories, we varied our confidence
parameter between 0.55 and 0.95, and measured the number of
responses required to satisfy user constraints (See Fig. 2). We ran
a second experiment with a fixed confidence (0.95) and varied CI
widths between 100 and 500 (not shown).

WOCMAN automatically recruits more workers to meet tighter
constraints on confidence thresholds. WOCMAN needed an average
of 111.4 responses for the highest confidence threshold (0.95) vs
14.9 for the lowest (0.55). Likewise, when CI widths are narrowed,
WOCMAN recruits more workers. WOCMAN needed an average of
107.3 responses for the tightest CI (width = 100; mean cost: $2.14;
median cost: $1.28) vs 9 for the widest (width = 500; mean cost:
$0.47; median cost: $0.32).

WOCMAN compares favorably against the state of the art vision-
based solution from Google, IM2CALORIES [13]. IM2CALORIES’
best performing algorithm had a mean absolute error (MAE) of
152.95 kcal with a standard error (SE) of 15.61 kcal. WOCMAN’s
best performing setting (1 − α = 0.95; CI width = 100) had
a MAE of 103.08 kcal with an SE of 6.00. While WOCMAN is
more expensive than IM2CALORIES, both in terms of latency and
cost, the equivalent WOCMAN program (shown above) is trivial to
write. IM2CALORIES also requires that a user’s GPS be active so
that the appropriate restaurant menu can be located and searched.
WOCMAN has no such restriction.
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