Statistical Error Bounds for Data Parallel Applications

Parker Hill, Michael Laurenzano, Babak Zamirai, Mehrzad Samadi, Scott Mahlke, Jason Mars, Lingjia Tang

Using Approximation (^{is} _{hard})

• Calibration, profiling — coarse-grain, quality is loose

- Calibration, profiling coarse-grain, quality is loose
- Formal reasoning difficult for programmer

- Calibration, profiling coarse-grain, quality is loose
- Formal reasoning difficult for programmer
- Application specific solutions limited scope

- Determine approximation for each input, but:
 - Must be quick
 - Must be correct

- Determine approximation for each input, but:
 - Must be quick
 - Must be correct

- Determine approximation for each input, but:
 - Must be quick
 - Must be correct

- Determine approximation for each input, but:
 - Must be quick
 - Must be correct

- Determine approximation for each input, but:
 - Must be quick
 - Must be correct

Overview

- Statistical error bounds for data parallel applications:
 - 1. Randomly sample approximation error
 - 2. Build final error model from the error samples
 - 3. Build an error bound from the model

- Data parallel model
 - Sample the output space \rightarrow error samples

- Data parallel model
 - Sample the output space \rightarrow error samples

- Data parallel model
 - Sample the output space \rightarrow error samples

- Data parallel model
 - Sample the output space \rightarrow error samples

- Data parallel model
 - Sample the output space \rightarrow error samples

Error Model

- Create a statistical model from the error samples
 - Represent final error in terms of component errors
 - Bayesian inference \rightarrow refine statistical model

Error Bound

- Find the error bound from the statistical error model
 - 90th percentile \rightarrow 90% confidence (error < bound)

Evaluation of Accuracy

- How accurate is this error bound in practice?
 - Try multiple confidence levels, 800 images
 - Tiling approximation*
 - 1% of error space was sampled

Potential Speedup

- Assuming:
 - 8 of 64 approximations checked to find ideal
 - X% sampled overhead = X% of exact computation
- Error target set to $\leq 10\%$

Conclusion

- Error can be statistically modeled:
 - Given the ability to sample the error space
 - Given some knowledge about the error space
- Can use statistical model to bound error
- Expected low enough overhead to compute per input

Questions?