
The Case for 
Compulsory Approximation
Adrian Sampson



A novelty, but not 
really research.

Nair & Prener 
WACI @ ASPLOS ’08

Slide 1 

 

Computing, Approximately

Ravi Nair and Dan Prener

IBM Thomas J. Watson Research Center

 

 

 



Hey, this 
could work!



Approximate computing’s adolescence

A session at most 
conferences.

“But when will it
really take off?”



Approximate computing’s adolescence

Business as usual.

Tech transfer.



Embrace 
compulsory approximation.





Machine learning

Scientific computing

Real-time graphics

Communications



Embracing compulsory approximation

Let’s go where approximation 
is already successful!

Generalize and build abstractions 
for the techniques people already use!

No “selling” necessary— 
there’s nothing to buy!





WE CAN LEARN WE CAN OFFER

Systems & PL tools 
to help cope with 
compulsory approx

Generalize ideas that 
currently locked away 
in application domains



Machine learning

Machine Learning
:

The High-Interest
Credit Card of Te

chnical Debt

D. Sculley, Gary H
olt, Daniel Golovin

, Eugene Davydov
,

Todd Phillips, Die
tmar Ebner, Vinay

Chaudhary, Mich
ael Young

{dsculley,g
holt,dgg,e

davydov}@go
ogle.com

{toddphilli
ps,ebner,v

chaudhary,
mwyoung}@go

ogle.com

Google, Inc

Abstract

Machine learning o
ffers a fantastically

powerful toolkit for
building complex s

ys-

tems quickly. This
paper argues that it

is dangerous to thin
k of these quick wi

ns

as coming for free.
Using the framewo

rk of technical deb
t, we note that it is

re-

markably easy to i
ncur massive ongo

ing maintenance co
sts at the system level

when applying mac
hine learning. The

goal of this paper i
s highlight several

ma-

chine learning spec
ific risk factors and

design patterns to b
e avoided or refacto

red

where possible. Th
ese include bounda

ry erosion, entangl
ement, hidden feed

back

loops, undeclared c
onsumers, data dep

endencies, changes
in the external wor

ld,

and a variety of sys
tem-level anti-patte

rns.

1 Machine Learning
and Complex Syst

ems

Real world softwar
e engineers are oft

en faced with the c
hallenge of moving

quickly to ship new

products or service
s, which can lead t

o a dilemma betwe
en speed of execut

ion and quality of
en-

gineering. The con
cept of technical d

ebt was first introd
uced by Ward Cun

ningham in 1992 as a

way to help quanti
fy the cost of such

decisions. Like inc
urring fiscal debt,

there are often sou
nd

strategic reasons to
take on technical d

ebt. Not all debt is
necessarily bad, bu

t technical debt doe
s

tend to compound.
Deferring the work

to pay it off results
in increasing costs

, system brittleness
,

and reduced rates o
f innovation.

Traditional method
s of paying off tec

hnical debt include
refactoring, increas

ing coverage of un
it

tests, deleting dead
code, reducing dep

endencies, tighteni
ng APIs, and impr

oving documentati
on

[4]. The goal of th
ese activities is not

to add new functio
nality, but to make

it easier to add futu
re

improvements, be c
heaper to maintain,

and reduce the like
lihood of bugs.

One of the basic ar
guments in this pap

er is that machine l
earning packages h

ave all the basic co
de

complexity issues
as normal code, bu

t also have a large
r system-level com

plexity that can cre
ate

hidden debt. Thus,
refactoring these lib

raries, adding bette
r unit tests, and asso

ciated activity is tim
e

well spent but does
not necessarily add

ress debt at a system
s level.

In this paper, we foc
us on the system-lev

el interaction betwe
en machine learning

code and larger sys-

tems as an area wh
ere hidden technica

l debt may rapidly
accumulate. At a s

ystem-level, a mac
hine

learning model ma
y subtly erode abst

raction boundaries.
It may be tempting

to re-use input sig-

nals in ways that cr
eate unintended tig

ht coupling of othe
rwise disjoint syste

ms. Machine learn
ing

packages may ofte
n be treated as blac

k boxes, resulting i
n large masses of “

glue code” or calib
ra-

tion layers that can
lock in assumption

s. Changes in the e
xternal world may

make models or inp
ut

signals change beh
avior in unintended

ways, ratcheting up
maintenance cost a

nd the burden of an
y

debt. Even monitor
ing that the system

as a whole is opera
ting as intended ma

y be difficult witho
ut

careful design.

1



WE CAN LEARN WE CAN OFFER

Checking, 
enforcement, and 
composition

Processes & marketing 
for efficiency–accuracy 
trade-offs

Machine learning



Scientific & numerical computing

[Panchekha, Sanchez-Stern, Wilcox, Tatlock; PLDI 2015]
http://herbie.uwplse.org



WE CAN LEARN WE CAN OFFER

Automation 
and dynamic tools

Manual, formal, 
worst-case analysis 
for when accuracy 
really counts

Scientific & numerical computing



https://youtu.be/-gQMulb6T2o

Real-time graphics



WE CAN LEARN WE CAN OFFER

A modicum of safety 
beyond guess & checkDynamic adaptability

Real-time graphics



Machine learning

Scientific computing

Real-time graphics

Communications



A covert way in 
to domains with 
approximation skeptics



Our community’s 
greatest weakness: 
quality metrics



Veni, vidi… generalizi? 
Let’s steal ideas 
and generalize them 
to other domains!




