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Mobile vision is a pretty cool idea

object recogniti
object loca

Image segme
3D structure reconst

izat
Ntati
ruct

localization & mappl

optical character
face
activity

'ecog
'ecod

'ecog

A
A

A

I

+
+

human pose estimation

..always on.

> ...ON your smartphone.

..In real time.
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ISCA 2016
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This project:
a programmable camera pipeline.



Let’s approximate a camera pipeline

Design approximation into
the camera sensor and the ISP

Show how 1o retrain vision models
to work on the cheaper, raw data

Measure energy-accuracy trade-offs
latent In real-world vision applications
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Reversing the pipeline




Sensitivity to ISP stages
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Sensitivity to ADC quantization
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Sensitivity to ADC quantization
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How much energy
can vision mode save?

Sensor ISP vision ASIC
137.1-338.6 mW 130-185 mW 204 mW | TrueNorth
[LiKamWa] [ON Semiconductor] 590 mW =]

250 mW |Hegarty/
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Sensor ISP vision ASIC




How much energy
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How much energy
can vision mode save?

Sensor ISP vision ASIC




Unresolved questions

Dynamic feedback loop

New signal processing to
Improve learnabillity

Incremental cost
for Incremental scene changes

Data movement between
sensor, ISP, and application



