
NAP: Noise-Based Sensitivity Analysis for Programs
Jesse Michel∗

MIT
Sahil Verma∗
IIT Kanpur

Benjamin Sherman
MIT

Michael Carbin
MIT

1 Introduction
Low-precision approximation of programs enables faster
computation in fields such as machine learning, data analyt-
ics, and vision. Such approximations automatically transform
a program into one that approximates the original output
but executes much faster. At the heart of this approximation
is sensitivity analysis – understanding the program’s robust-
ness to various perturbations. Sensitivity analysis provides
a metric to measure how much each value in the program to
produce a faster, yet accurate, approximate program.
We propose NAP (Noise-based Analyzer of Programs)

which provides a novel sensitivity analysis of each oper-
ator and variable in a program. NAP performs sensitivity
analysis by introducing independent Gaussian noise to each
value in a program (e.g., arithmetic operator and variable
reference), producing a stochastic semantics of the program.
NAP then jointly maximizes the variances of the noise

distributions subject to a bound on the stochastic program’s
expected error. NAP poses the maximization process as the
solution to a novel constrained optimization problem and
solves the problem using stochastic gradient descent (SGD).

Each program value’s resulting variance denotes its sensi-
tivity. If a value is less sensitive to perturbations, then the
optimal variance of the value’s Gaussian will be large. Like-
wise, if a program value is more sensitive, then its variance
will be small. Together, these variances describe a distribu-
tion over potentially valid approximations, which we term
the program’s noise envelope.

NAP’s design explores a new area for sensitivity analysis
in that its noise-based approach computes a region-based

estimate of sensitivity that computes the expected error with
respect to perturbations within the program’s entire noise
envelope. This approach can more accurately characterize
sensitivity than a point-based estimate, such as the deriva-
tive, because while the derivative at a point may be large
in magnitude, the total variation in expected error over the
point’s local region may be small.
In this paper, we validate NAP’s sensitivities by using

them to generate mixed-precision approximate programs
for a neural network as well as for a set of scientific com-
puting benchmarks. We demonstrate the value of NAP’s
noise-based approach as well as validate the relationship
between sensitivity analysis for expected error versus that
for worst-case error.

∗These authors contributed equally to the paper.

WAX’19, June 22, 2019, Phoenix, AZ, USA

2 NAP (by Example)
NAP takes as input a program f , a distributionD over inputs
to f , and a loss function L that describes how good approx-
imate outputs are, and it produces a sensitivity analysis. In
this example, NAP’s pipeline for sensitivity analysis is:

1. Add 0-mean Gaussian noise parametrized by variance
to every variable and operator.

2. Solve an optimization problem to maximize these vari-
ances subject to an expected error constraint.

For example, consider the quadratic function x2 + 2x + 1
or, parametrizing the operators,

f (x , {×0,+1,×2,+3}) = x ×0 x +1 2 ×2 x +3 1.

NAP provides sensitivity analysis by explicitly inserting vari-
ables ϵk ∼ N(0,σ 2

k) for each operator ⊙k and ϵy ∼ N(0,σ 2
y)

for each variable y. Inserting these variables gives a new
function д defined as

д(x ; ®ϵ) = [(x +ϵx)(x +ϵx)+ϵ0]+ϵ1+ [2(x +ϵx)+ϵ2]+ϵ3+ 1.

Letting ®σ be the vector of standard deviations, NAP uses
SGD to solve the optimization problem

max
®σ

(∑
i

log(σi)︸ ︷︷ ︸
noise envelope

− λ E
x∼D, ®ϵ∼N(®0, ®σ 2)

L(x , ®ϵ︸ ︷︷ ︸
minimize error

)

)
(1)

where λ > 0 is a regularization parameter and in this example
the loss L is the squared error

L(x , ®ϵ) =
(
д(x ; ®0) − д(x ; ®ϵ)

)2
.

The first term in the objective specifies that solutions with
larger volume noise envelops are more desirable. The second
term ensures that the approximate result д(x ; ®ϵ) is close to
the exact result д(x ; ®0) by estimating the expected error, com-
puted by averaging over samples from the data distribution.
Imagine x ∼ U[−1 − δ ,−1 + δ] in our running example.

If δ is large, NAP will make σx small since there will be a
large variance of roughly σxx added to the output. For small
δ , σxx is small allowing for σx to increase. Verifying this
experimentally, NAP assigns a standard deviation σx of four
times the magnitude when δ = 0.1 versus δ = 1.

3 Case Studies
NAP’s sensitivity analysis is a new point in the trade-off
space of approaches in that it measures the sensitivity of a
local region around the original values of the program than
at the original values themselves. In the following case stud-
ies we validate the behavior of NAP’s sensitivity analysis

1

WAX’19, June 22, 2019, Phoenix, AZ, USA Jesse Michel, Sahil Verma, Benjamin Sherman, and Michael Carbin

by using its sensitivities to perform mixed-precision selec-
tion for several programs, including neural networks and a
benchmark suite of standard, numerical programs.

3.1 Mixed-Precision Allocation
To validate NAP, we used it to perform mixed-precision
quantization and pruning of deep neural networks. For this
case study we only add (and train) noises on the neural
network’s weights and not the operators in its computation.1
We set the loss L used in Equation 1 to be the categorical
cross-entropy loss, which is consistent with the loss used to
train the original network.

After training the variance for each weightw , we compute
the standard deviation σ and define a function f with

f (σ) = ⌊c − log(σ)⌋

for a constant c . If f (σ) ≤ 0 we prune w , and otherwise
we quantize w to f (σ) mantissa bits for use with MPFR’s
multiple-precision floating-point computation representa-
tion, which supports specifying an arbitrary number of bits
of precision in the mantissa. For this usage, c denotes a pa-
rameter that we can vary to control the average bitwidth as
shown in Figure 1.

2 4 6 8 10
Average bitwidth per parameter

20

40

60

80

100

Te
st

 se
t a

cc
ur

ac
y

(%
)

10-50-90 Percentile Chart

SGD (Normal Dist.)
Uniform Sensitivity
Hessian Sensitivity

Figure 1. The accuracy of a quantized (fixed-point quan-
tized) model as a function of average bitwidth. Because NAP
results (purple) are stochastic, we ran it 30 times to show the
distribution of results.

Figure 1 presents our results on a LeNet-style architecture
for MNIST [7]. Our LeNet-style architecture involves arith-
metic over 27K weights [6]. We train the noise variances for
50 epochs (50 full sweeps) of the MNIST dataset.

Figure 1 shows that even for low average bitwidths, much
of the accuracy of the model remains. For example, with an
average of about 2 bits we achieve 95.3% test accuracy versus
a 99.5% baseline accuracy of the unquantized model. More-
over, NAP outperforms uniform quantization (quantizing
the entire neural network to a fixed bitwidth) at these low
average bitwidths. This demonstrates that NAP’s sensitivity
1In Section 3.3 we also consider noise of variances

analysis is able to distinguish between weights that are more
sensitive to perturbation and weights that are less sensitive
(or not necessary at all) and therefore allocate them more or
fewer (or no) bits, respectively.

3.2 Region-based Sensitivity
As a comparison to a point-based approach (versus our noise-
based approach), the Hessian Sensitivity line in Figure 1
shows the result of calculating the second-order derivatives
of each parameter, which is a standard analytical technique.

The line for Hessian sensitivity in Figure 1 computes the
sensitivity of each parameter p as log(∂

2L
∂p2), which is a stan-

dard, point-based sensitivity technique [2]. Comparing fig-
ures 2 and 3 we see that the Hessian sensitivities follow a
unimodal distribution, while NAP’s sensitivities follow a
bimodal distribution.

Figure 2. The Hessian-based sensitivities have a single
mode.

Figure 3. Bimodal noise distribution of NAP with a heavy
left tail i.e. a small collection ofweights that are very sensitive
to perturbations.

2

NAP: Noise-Based Sensitivity Analysis for Programs WAX’19, June 22, 2019, Phoenix, AZ, USA

3.3 Expected versus Worse-case Error
NAP optimizes the expected error of the program, where the
expectation quantifies over both the input distribution as
well as the noise distribution. To evaluate the relationship
between this expected error and a more standard worst-
case error model, we compare mixed-precision allocations
guided by NAP versus those from FPTuner [1] on a suite of
numerical programs for scientific computing from FPBench.

FPTuner. FPTuner [1] provides upper bounds on the error
for double-precision versions of these FPBench programs for
any possible inputs within the range.
Although we compare NAP to FPTuner, they have fun-

damental differences [1]. For input variables from a given
range, FPTuner satisfies a desired absolute error bound. To
achieve this, FPTuner creates an appropriate mixed-precision
allocation, for example, it may set operators and variables to
either 64-bit or 128-bits as needed. The second column of Ta-
ble (1) shows the bound for an allocation where all variables
and operators are 64-bits.
An additional challenge for FPTuner (and other solver-

based techniques) is that they do not scale to larger pro-
grams. To evaluate FPTuner’s scalability on larger numerical
programs, we evaluated FPTuner on two programs. The first
computes the sum of elements of the matrix obtained by
multiplication of two 5 by 5 input matrices. The second com-
putes the result of applying a sigmoid function to the dot
product of an input vector with a weight vector each of size
50. These programs model the computation of a neuron in
a neural network. We applied FPTuner to both programs
with an error bound of 10−15 and FPTuner timed out given a
threshold of 15 hours.

Methodology. We used NAP to generate a mixed-precision
approximate program that satisfies a given expected error
constraint where we measure error as root-mean-square er-
ror (RMSE). We generate an input distribution by sampling.
We assume each input is uniformly distributed over the range
that FPBench specifies. For programs with multiple inputs,
we generate inputs independently. We then ran NAP to gen-
erate sensitivities. To achieve a given expected error, we
set the λ parameter for NAP’s optimization problem using
binary search.

To generate mixed-precision programs, we take the log of
the variances assigned to each operator and variable and use
it to assign a corresponding allocation of mantissa bits for use
with MPFR’s multiple-precision floating-point computation
representation. As noted in Section 3.1, using MPFR enables
us compute with an arbitrary number of bits of precision.

We compare expected error produced byNAP tomaximum
error bounds produced by FPTuner.

Results. Table 1 shows these RMSEs in comparison to the
FPTuner error bounds, together with the mean number of
mantissa bits used in our approximate programs to achieve

Benchmarks FPTuner RMSE Mean Bits
verlhulst 3.79e-16 3.72e-16 50
sineOrder3 1.17e-15 7.90e-16 50
predPrey 1.99e-16 1.73e-16 50
sine 8.73e-16 8.34e-17 51
doppler1 1.82e-13 7.75e-14 51
doppler2 3.20e-13 1.07e-13 51
doppler3 1.02e-13 5.10e-14 51
rigidbody1 3.86e-13 1.37e-13 51
sqroot 7.45e-16 4.00e-16 50
rigidbody2 5.23e-11 6.08e-12 51
turbine2 4.13e-14 2.35e-14 50
carbon gas 1.51e-08 3.01e-09 49
turbine1 3.16e-14 1.13e-14 51
turbine3 1.73e-14 1.40e-14 50
jet 2.68e-11 1.07e-11 50

Table 1. We compare FPTuner’s maximum error bound
against NAP’s empirical root-mean-squared error. Mean bits
is the average number of bits in the mantissa of the approxi-
mate program (vs. FPTuner’s 52-bit mantissa).

those RMSEs. These results illustrate that for a fixed number
of bits the expected error (fromNAP) is lower thanmaximum
error (from FPTuner) and for an expected error equalling the
maximum error, fewer bits should be needed.

This relaxed requirement gives NAP the flexibility to gen-
erate tighter expected error bounds using fewer bits than
FPTuner for all of the benchmarks. This gives a measure
of how weakening from worst-case bounds to average-case
bounds allows further approximation.

4 Related Work
Researchers have approached program approximation by
performing loop perforations, function substitutions, and
quantization [3, 5, 8]. Other approaches provide maximum
instead of expected error bounds, which scales poorly and
is less well-suited for modern applications such as machine
learning [1, 3]. Still others produce annotations that identify
operations requiring high precision [9, 10].
We compare a Hessian-based quantization approach to

ours and show that at low bitwidths, it produces worse re-
sults than our approach [2]. Our sensitivity analysis is similar
to the noise model used to compute generalization bounds on
neural networks [4]. We hope to extend our work to provide
generalization bounds on families of approximations.

References
[1] Wei-Fan Chiang, Mark Baranowski, Ian Briggs, Alexey Solovyev,

Ganesh Gopalakrishnan, and Zvonimir Rakamarić. 2017. Rigorous
Floating-point Mixed-precision Tuning. In POPL.

[2] Yann Le Cun, John S. Denker, and Sara A. Solla. 1990. Optimal Brain
Damage. In NIPS.

3

WAX’19, June 22, 2019, Phoenix, AZ, USA Jesse Michel, Sahil Verma, Benjamin Sherman, and Michael Carbin

[3] Eva Darulova and Viktor Kuncak. 2014. Sound compilation of reals.
In POPL.

[4] Gintare Karolina Dziugaite and Daniel M. Roy. 2017. Computing Non-
vacuous Generalization Bounds for Deep (Stochastic) Neural Networks
with Many More Parameters than Training Data. In UAI.

[5] S. Han, H. Mao, and W. J. Dally. 2015. Deep Compression: Compress-
ing Deep Neural Networks with Pruning, Trained Quantization and
Huffman Coding. In ICLR.

[6] Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998.
Gradient-based learning applied to document recognition. Proc. IEEE
(Nov. 1998).

[7] Yann LeCun and Corinna Cortes. 1998. MNIST handwritten digit
database. http://yann.lecun.com/exdb/mnist/. (1998).

[8] Sasa Misailovic, Michael Carbin, Sara Achour, Zichao Qi, and Martin C.
Rinard. 2014. Chisel: Reliability- and Accuracy-Aware Optimization
of Approximate Computational Kernels. In OOPSLA.

[9] B. Nongpoh, R. Ray, S. Dutta, and A. Banerjee. 2017. AutoSense: A
Framework for Automated Sensitivity Analysis of Program Data. IEEE
Transactions on Software Engineering 43, 12 (Dec 2017).

[10] Pooja Roy, Rajarshi Ray, Chundong Wang, and Weng Fai Wong. 2014.
ASAC: Automatic Sensitivity Analysis for Approximate Computing.
In LCTES.

4

	1 Introduction
	2 NAP (by Example)
	3 Case Studies
	3.1 Mixed-Precision Allocation
	3.2 Region-based Sensitivity
	3.3 Expected versus Worse-case Error

	4 Related Work
	References

