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Abstract
Traditionally, cameras are solely imaging devices designed to
capture images for human consumption.With the prevalence
of computer vision as a major technique in many modern
application domains, such as robotics, unmanned aerial ve-
hicles, and video surveillance, it is no longer the case that
cameras necessarily capture data for human use. Instead,
there has been a recent trend toward intelligent cameras
that extract visual insights. Although demand for these sys-
tems is high, there are many challenges in designing and
implementing intelligent cameras. In many application do-
mains, application-specific cameras need to operate within
energy and latency constraints, which may not be feasible
with a generic camera. However, the cost of hand-designing
an application-specific camera is prohibitively expensive.
Furthermore, in many scenarios an intelligent camera must
be able to process a variety of different tasks. For instance, a
camera on a mobile robot must be able to supply useful im-
age data for depth estimation and object detection tasks. As
such, while optimizations for a single task are desirable, they
must be balanced with some level of flexibility. As such, this
research is aims to answer the question: “How can we design
intelligent camera systems that effectively balance efficiency
and flexibility?” We answer this question by proposing the
Self-Optimizing Intelligent Camera system, which enables
efficiency through automatic tuning of its design parame-
ters, and flexibility though dynamic adjustment of its design
parameters for different computer vision tasks.

1 Camera Design as an End-to-End
Optimization

A key insight in designing a custom camera system for a
particular task is to consider the camera system as a whole.
In general, a camera system is comprised of three parts: opti-
cal elements, a vision algorithm, and hardware architecture.
Prior work tends to focus on optimizing a single component
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of this system. However, co-optimization of these compo-
nents is critical because they interact with each other in ways
that have non-trivial effects on latency, energy efficiency, and
accuracy. Thus, by co-optimizing optics, algorithms and hard-
ware, more efficient systems can be designed. We are thus
able to formulate the design of intelligent camera systems as
a co-optimization problem that tunes three groups of design
parameters: 1) optical parameters, such as lens curvatures,
distances between lenses and between the lens and sensor
plane, and lens aperture, 2) algorithmic parameters, such as
CNNweights and sparsity, and 3) hardware parameters, such
as the number of MAC units and on-chip buffer sizes. This
optimization framework can optimize for metrics of interest
(e.g. accuracy), while meeting application constraints such
as energy budgets and latency requirements.

2 Modeling the Camera Pipeline
2.1 Modeling Optical Parameters
When considering models of optical parameters in the co-
optimization pipeline, it is important to balance model sim-
plicity with accuracy. Also, since we use a gradient descent-
based approach to optimize optical parameters, it is critical
that the model also be differentiable with respect to the op-
tical parameters. We use point-spread functions (PSFs) to
model the optical system because such a model has the desir-
able property of being differentiable with respect to optical
parameters [1] Additionally, we simplify the model by assum-
ing light hits the lens as a plane wave. According to Sitzmann
et al. [1], approximating light as a plane wave introduces a
small amount of error into the system, but the amount of
error decreases as objects are farther away from the optical
system. Even at close distances, the level of error is usually
tolerable. We follow the formulation of optics presented by
Sitzmann [1] for differentiable optical elements.

2.2 Modeling Sensor Noise
Since the sensor plane may not be completely accurate, it is
necessary to model noise from the imaging process. Since
this sensor noise must be incorporated into the pipeline,
we choose to model sensor noise as a Gaussian to retain
differentiability.
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Figure 1. Diagram of the co-optimization pipeline

2.3 Modeling Hardware Architecture
Modeling hardware architecture allows for optimization of
hardware parameters, such as on-chip buffer size or number
of MAC units. When modeling hardware, it is important to
know how hardware parameters affect the overall latency
and energy-efficiency of the system. Previous work by Yang
et al. shows that for a systolic array-based architecture, over-
all energy consumption of CNN inference can be modeled
as a sum of the energy used for computation (through use of
MAC units) and the energy used for data movement (moving
intermediate values between DRAM, SRAM and buffer). In
cases where CNN inference is being executed on other archi-
tectures, such as GPUs or CPUs, energy consumption can
still be predicted and optimized using a combination of the
Alternating Direction Method of Multipliers (ADMM) frame-
work and gradient-based learning algorithms [2, 3]. As such,
we are able to include energy consumption by hardware into
the camera model, and optimize hardware parameters within
a given energy budget.

2.4 Co-optimization Pipeline
The above sections have outlined a forward pass through
the camera system. In the training process, we will be able
to calculate domain-specific loss from the pipeline. Since
each element of the pipeline is differentiable with respect to
its parameters, we can employ gradient descent in order to
tune the camera system’s parameters based on the loss for a
given example. Figure 1 presents a block diagram of this co-
optimization pipeline, where given image data, we are able
to complete a forward pass to the CNN through optics and
sensor. We are then able to backpropagate to CNN, optics,
and hardware parameters.

3 Self-Optimizing Camera
We propose a camera system that leverages the above co-
optimization process to reconfigure itself for a given com-
puter vision task. When given a different task, the system
can re-execute the optimization process for the given task.
By doing so, it is able to determine and adjust to the op-
timal configuration within the system constraints. Key to
this optimization process it the fact that many of the opti-
mization parameters are dynamically adjustable. Some of
these dynamically adjustable parameters include: the focal
length and aperture size of the optical system; sparsity and
quantization of the vision algorithm; and the on-chip buffer
partitioning of the hardware architecture. By dynamically

Figure 2. Accuracy com-
parison of CNNs that are
trained/tested on the same
PSF.

Figure 3. Comparison of
stronger networks and
weaker PSFs, and a weaker
network and stronger PSF.

tuning these system parameters according to the application-
specific co-optimization procedure, we are able to build a
system that is able to optimize itself for its current task.

4 Prototype and Preliminary Results
To motivate the need for a co-optimization procedure that
utilizes optical parameters, we ran an experiment that mod-
eled various lens configurations, and forward-modeled image
data as seen through the lens for an image classification task.
We found that introducing a small amount of blur through
the PSF of a potentially unoptimized lens can reduce accu-
racy by up to 20%. We find that much of the accuracy can
be recovered through training of the CNN with image data
convolved with the PSF. Figure 2 compares the performance
of Inception V3 and MobileNet on an image classification
task on a subset of Imagenet dataset. They are tested on
several hand-picked optical front-ends of differing quality
(PSF0, PSF1, PSF2, in descending order of quality). We can
see that the accuracy of the CNN is significantly impacted
by the optical front-end. In Figure 3, a simpler CNN is used
to illustrate how having stronger optics can lead to higher
accuracy even for eaker CNNs. We are in the process of
manufacturing a prototype of the self-optimizing camera.
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